Published online by Cambridge University Press: 27 February 2006
Two- and three-dimensional instabilities of the two-dimensional symmetric flow generated by a circular cylinder oscillating with simple harmonic motion in quiescent fluid, or, alternatively, by oscillatory flow past a stationary cylinder at low Keulegan-Carpenter and Stokes numbers are investigated via Floquet analysis and direct numerical simulation. Previous experimental visualization has found that the flows produced at low amplitudes and frequencies of motion can be grouped by their visual characteristics into a number of distinct regimes. At low values of Keulegan-Carpenter and Stokes numbers, the flow is two-dimensional and has a reflection symmetry about the axis of oscillation, in addition to a pair of spatio-temporal symmetries. This study isolates and classifies the symmetry-breaking instabilities from these two-dimensional basic states as functions of these control parameters. It is found that while the initial bifurcations produced by increasing the parameters can be to three-dimensional flows, much of the behaviour can be explained in terms of two-dimensional symmetry-breaking instabilities. These have two primary manifestations: at low Stokes numbers, the instability is synchronous with the imposed oscillation, and gives rise to a boomerang-shaped mode, while at higher Stokes numbers, the instability is quasi-periodic, with a well-defined second period, which becomes infinite as Stokes numbers are reduced along the marginal stability boundary, ‘freezing’ the quasi-periodic mode into a synchronous one. These two-dimensional modes are, with further small increase in control parameter, unstable to three-dimensional secondary instabilities, and these are the flows which have been reported in previous experimental studies. In contrast, the mode first reported by Honji (J. Fluid Mech. vol. 107, 1981, p. 509), which arises at high Stokes numbers, and lower Keulegan-Carpenter numbers than the two-dimensional quasi-periodic mode, has a three-dimensional primary instability arising directly from the symmetrical two-dimensional basic state.