Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T09:14:55.380Z Has data issue: false hasContentIssue false

Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow

Published online by Cambridge University Press:  26 September 2014

G. A. Gerolymos
Affiliation:
Faculty of Engineering, Université Pierre-et-Marie-Curie (UPMC), 4 place Jussieu, 75005 Paris, France
I. Vallet*
Affiliation:
Faculty of Engineering, Université Pierre-et-Marie-Curie (UPMC), 4 place Jussieu, 75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

We investigate the fluctuations of thermodynamic state variables in compressible aerodynamic wall turbulence, using results of direct numerical simulation (DNS) of compressible turbulent plane channel flow. The basic transport equations governing the behaviour of thermodynamic variables (density, pressure, temperature and entropy) are reviewed and used to derive the exact transport equations for the variances and fluxes (transport by the fluctuating velocity field) of the thermodynamic fluctuations. The scaling with Reynolds and Mach number of compressible turbulent plane channel flow is discussed. Statistics and correlation coefficients of the thermodynamic fluctuations are examined. Finally, detailed budgets of the transport equations for the variances and fluxes of the thermodynamic variables are analysed. The implications of these results, leading both to the understanding of the thermodynamic interactions in compressible wall turbulence and to possible improvements in statistical modelling, are assessed. Finally, the required extension of existing DNS data to fully characterise this canonical flow is discussed.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary-layers. Phys. Fluids 23, 085102.CrossRefGoogle Scholar
Bowersox, R. D. W. 2009 Extension of equilibrium turbulent heat flux models to high-speed shear flows. J. Fluid Mech. 633, 6170.CrossRefGoogle Scholar
Bradshaw, P. 1977 Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9, 3354.CrossRefGoogle Scholar
Bridgman, P. W. 1961 The Thermodynamics of Electrical Phenomena in Metals and a Condensed Collection of Thermodynamic Formulas. Dover.Google Scholar
Canuto, V. M. 1997 Compressible turbulence. Astrophys. J. 482, 827851.CrossRefGoogle Scholar
Chang, P. A. III, Piomelli, U. & Blake, W. K. 1999 Relations between wall-pressure and velocity-field sources. Phys. Fluids 11 (11), 34343448.CrossRefGoogle Scholar
Chernyshenko, S. I. & Baig, M. F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.CrossRefGoogle Scholar
Chou, P. Y. 1945 On velocity correlations and the solutions of the equations of turbulent fluctuations. Q. Appl. Maths 3, 3854.CrossRefGoogle Scholar
Chu, B. T. & Kovásznay, L. S. G. 1958 Nonlinear interactions in a viscous heat-conducting compressible gas. J. Fluid Mech. 3, 494514.CrossRefGoogle Scholar
Coleman, G. N., Kim, J. & Moser, R. D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.CrossRefGoogle Scholar
Donzis, D. A. & Jagannathan, S. 2013 Fluctuation of thermodynamic variables in stationary compressible turbulence. J. Fluid Mech. 733, 221244.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M. P. 2010 Direct numerical simulation of hypersonic turbulent boundary-layers – part 2 – effect of wall temperature. J. Fluid Mech. 655, 419445.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary-layers – part 3 – effect of Mach-number. J. Fluid Mech. 672, 245267.CrossRefGoogle Scholar
Duan, L. & Martín, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary-layers – part 4 – effect of high enthalpy. J. Fluid Mech. 684, 2559.CrossRefGoogle Scholar
Eckert, E. R. G. & Drake, R. M. 1972 Analysis of Heat and Mass Transfer. McGraw-Hill.Google Scholar
Erlebacher, G. & Sarkar, S. 1993 Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. Phys. Fluids A 5 (12), 32403254.CrossRefGoogle Scholar
Favre, A. 1965 Equations des gaz turbulents compressibles – I – formes générales. J. Méc. 4, 361390.Google Scholar
Foysi, H., Sarkar, S. & Friedrich, R. 2004 Compressibility effects and turbulence scalings in supersonic channel flow. J. Fluid Mech. 509, 207216.CrossRefGoogle Scholar
Friedrich, R. 2007 Compressible turbulent flows: aspects of prediction and analysis. Z. Angew. Math. Mech. 87 (3), 189211.CrossRefGoogle Scholar
Friedrich, R., Foysi, H. & Sesterhenn, J. 2006 Turbulent momentum and passive scalar transport in supersonic channel flow. J. Braz. Soc. Mech. Sci. Engng 28 (2), 174185.Google Scholar
Gatski, T. B. & Bonnet, J.-P. 2009 Compressibility, Turbulence and High Speed Flow. Elsevier.Google Scholar
Gerolymos, G. A. 1990 Implicit multiple-grid solution of the compressible Navier–Stokes equations using ${k}$ $\varepsilon $ turbulence closure. AIAA J. 28 (10), 17071717.CrossRefGoogle Scholar
Gerolymos, G. A., Lo, C. & Vallet, I. 2012a Tensorial representations of Reynolds-stress pressure–strain redistribution. Trans. ASME J. Appl. Mech. 79 (4), 044506; (1–10).CrossRefGoogle Scholar
Gerolymos, G. A., Lo, C., Vallet, I. & Younis, B. A. 2012b Term-by-term analysis of near-wall second moment closures. AIAA J. 50 (12), 28482864.CrossRefGoogle Scholar
Gerolymos, G. A., Sénéchal, D. & Vallet, I.2009a Analysis of dual-time-stepping with explicit subiterations. AIAA Paper 2009-1608, 47. Aerospace Sciences Meeting, 5–8 January 2009, Orlando.Google Scholar
Gerolymos, G. A., Sénéchal, D. & Vallet, I. 2009b Very-high-order WENO schemes. J. Comput. Phys. 228, 84818524.CrossRefGoogle Scholar
Gerolymos, G. A., Sénéchal, D. & Vallet, I. 2010 Performance of very-high-order upwind schemes for DNS of compressible wall-turbulence. Intl J. Numer. Meth. Fluids 63, 769810.CrossRefGoogle Scholar
Gerolymos, G. A., Sénéchal, D. & Vallet, I. 2013 Wall effects on pressure fluctuations in turbulent channel flow. J. Fluid Mech. 720, 1565.CrossRefGoogle Scholar
Gerolymos, G. A. & Vallet, I. 1996 Implicit computation of the 3-D compressible Navier–Stokes equations using ${k}$ $\varepsilon $ turbulence closure. AIAA J. 34 (7), 13211330.CrossRefGoogle Scholar
Ghosh, S., Foysi, H. & Friedrich, R. 2010 Compressible turbulent channel and pipe flow: similarities and differences. J. Fluid Mech. 648, 155181.CrossRefGoogle Scholar
Ghosh, S., Friedrich, R., Pfitzner, M., Stemmer, C., Cuenot, B. & El Hafi, M. 2011 Effects of radiative heat transfer on the structure of turbulent supersonic channel flow. J. Fluid Mech. 677, 417444.CrossRefGoogle Scholar
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary-layer at Mach 2.5. J. Fluid Mech. 414, 133.CrossRefGoogle Scholar
Hamba, F. 1999 Effects of pressure fluctuations on turbulence growth in compressible homogeneous shear flow. Phys. Fluids 11 (6), 16231635.CrossRefGoogle Scholar
Hamba, F. & Blaisdell, G. A. 1997 Towards modelling inhomogeneous compressible turbulence using a 2-scale statistical theory. Phys. Fluids 9 (9), 27492768.CrossRefGoogle Scholar
Hansen, C. F.1958 Approximations for the thermodynamic and transport properties of high-temperature air. Tech. Note 4150. NACA, Ames Aeronautical Laboratory, Moffett Field, [CA, USA].Google Scholar
Hu, Z. W., Morfey, C. L. & Sandham, N. D. 2006 Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J. 44 (7), 15411549.CrossRefGoogle Scholar
Huang, P. G., Coleman, G. N. & Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelling. J. Fluid Mech. 305, 185218.CrossRefGoogle Scholar
Hultmark, M., Bailey, S. C. C. & Smits, A. J. 2010 Scaling of near-wall turbulence in pipe flow. J. Fluid Mech. 649, 103113.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Kestin, J. 1979 A Course in Thermodynamics, vol. 1, 1st edn. Hemisphere. McGraw-Hill.Google Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel-flow. J. Fluid Mech. 205, 421451.CrossRefGoogle Scholar
Kim, J. 2012 Progress in pipe and channel flow turbulence, 1961–2011. J. Turbul. 13, 000045.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low-Reynolds-number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kovásznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aero. Sci. 20, 657674; 682.CrossRefGoogle Scholar
Kreuzinger, J., Friedrich, R. & Gatski, T. B. 2006 Compressibility effects in the solenoidal dissipation-rate equation: a priori assessment and modelling. Intl J. Heat Fluid Flow 27, 696706.CrossRefGoogle Scholar
Lagha, M., Kim, J., Eldredge, J. D. & Zhong, X. 2011a Near-wall dynamics of compressible boundary layers. Phys. Fluids 23, 065109.CrossRefGoogle Scholar
Lagha, M., Kim, J., Eldredge, J. D. & Zhong, X. 2011b A numerical study of compressible turbulent boundary-layers. Phys. Fluids 23, 015106.CrossRefGoogle Scholar
Lechner, R., Sesterhenn, J. & Friedrich, R. 2001 Turbulent supersonic channel flow. J. Turbul. 2, 001.1-25.CrossRefGoogle Scholar
Liepmann, H. W. & Roshko, A. 1957 Elements of Gasdynamics. John Wiley and Sons.CrossRefGoogle Scholar
Maeder, T., Adams, N. A. & Kleiser, L. 2001 Direct simulation of turbulent supersonic boundary-layers by an extended temporal approach. J. Fluid Mech. 429, 187216.CrossRefGoogle Scholar
Mahle, I., Foysi, H., Sarkar, S. & Friedrich, R. 2007 On the turbulence structure of inert and reacting compressible mixing layers. J. Fluid Mech. 593, 171180.CrossRefGoogle Scholar
Martín, M. P. 2007 Direct numerical simulation of hypersonic turbulent boundary-layers – part 1 – initialization and comparison with experiments. J. Fluid Mech. 570, 347364.CrossRefGoogle Scholar
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.CrossRefGoogle Scholar
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2003 A DNS algorithm using b-spline collocation method for compressible turbulent channel flow. Comput. Fluids 32, 751776.CrossRefGoogle Scholar
Morinishi, Y., Tamano, S. & Nakabayashi, K. 2004 Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls. J. Fluid Mech. 502, 273308.CrossRefGoogle Scholar
Morkovin, M. V. 1962 Effects of compressibility on turbulent flows. In Mechanics of Turbulence (Proceedings of the International Colloquium, 28 August–2 September 1961, Marseille, France) (ed. Favre, A.), Colloques Internationaux du CNRS, vol. 108, pp. 367380. Editions du CNRS.Google Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to ${\mathit{Re}}_{\tau }=590$ . Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Panda, J. & Seasholtz, R. G. 2002 Experimental investigation of density fluctuations in high-speed jets and correlation with generated noise. J. Fluid Mech. 450, 97130.CrossRefGoogle Scholar
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2013 Probing high-Reynolds-number effects in numerical boundary-layers. Phys. Fluids 25, 021704.CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent-boundary-layer at $M=2.25$ . Phys. Fluids 16 (3), 530545.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Le Ribault, C. & Friedrich, R. 1997 Investigation of transport equations for turbulent heat fluxes in compressible flows. Intl J. Heat Mass Transfer 40 (11), 27212738.CrossRefGoogle Scholar
Ristorcelli, J. R. 1997 A pseudosound constitutive relationship for the dilatational covariances in compressible turbulence. J. Fluid Mech. 347, 3770.CrossRefGoogle Scholar
Rubinstein, R. & Erlebacher, G. 1997 Transport coefficients in weakly compressible turbulence. Phys. Fluids 9, 30373057.CrossRefGoogle Scholar
Sarkar, S. 1992 The pressure-dilatation correlation in compressible flows. Phys. Fluids A 4 (12), 26742682.CrossRefGoogle Scholar
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.CrossRefGoogle Scholar
Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.CrossRefGoogle Scholar
Sauret, E. & Vallet, I. 2007 Near-wall turbulent pressure diffusion modelling and influence in 3-D secondary flows. Trans. ASME J. Fluids Engng 129 (5), 634642.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary-layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary-Layer Theory, 3rd edn McGraw-Hill.Google Scholar
Sénéchal, D.2009 DNS des ecoulements turbulents compressibles: fluctuations de pression, de masse volumique et de température. Doctorat, Université Pierre-et-Marie-Curie, Paris, France.Google Scholar
Sesterhenn, J. 2001 A characteristic-type formulation of the Navier–Stokes equations for high-order upwind schemes. Comput. Fluids 30, 3767.CrossRefGoogle Scholar
Shahab, M. F., Lehnasch, G., Gatski, T. B. & Comte, P. 2011 Statistical characteristics of an isothermal, supersonic developing boundary layer flow from DNS data. Flow Turbul. Combust. 86, 369397.CrossRefGoogle Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.CrossRefGoogle Scholar
Spina, E. F., Smits, A. J. & Robinson, S. K. 1994 The physics of supersonic turbulent boundary-layers. Annu. Rev. Fluid Mech. 26, 287319.CrossRefGoogle Scholar
Tamano, S. & Morinishi, Y. 2006 Effect of different thermal wall boundary-conditions on compressible turbulent channel flow at $M=1.5$ . J. Fluid Mech. 548, 361373.CrossRefGoogle Scholar
Taulbee, D. & VanOsdol, J.1991 Modeling turbulent compressible flows: the mass fluctuating velocity and squared density. AIAA Paper 1991-0524 (doi:10.2514/6.1991-524).CrossRefGoogle Scholar
Teitel, M. & Antonia, R. A. 1993 Heat transfer in fully developed turbulent channel flow: comparison between experiment and direct numerical simulations. Intl J. Heat Mass Transfer 36, 17011706.CrossRefGoogle Scholar
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scalings in high-Reynolds-number turbulent boundary-layers. J. Fluid Mech. 585, 140.CrossRefGoogle Scholar
Tsuji, Y., Imayama, S., Schlatter, P., Alfredsson, P. H., Johansson, A. V., Hutchins, N. & Monty, J. 2012 Pressure fluctuation in high-Reynolds-number turbulent boundary-layer: results from experiments and DNS. J. Turbul. 13, 000050.CrossRefGoogle Scholar
Vallet, I. 2007 Reynolds-stress modelling of 3-D secondary flows with emphasis on turbulent diffusion closure. Trans. ASME J. Appl. Mech. 74 (6), 11421156.CrossRefGoogle Scholar
Wei, L. & Pollard, A. 2011a DNS of compressible turbulent channel flows using the discontinuous Galerkin method. Comput. Fluids 47, 85100.CrossRefGoogle Scholar
Wei, L. & Pollard, A. 2011b Interactions among pressure, density, vorticity and their gradients in compressible turbulent channel flow. J. Fluid Mech. 673, 118.CrossRefGoogle Scholar
White, M. F. 1974 Viscous Fluid Flow. McGraw-Hill.Google Scholar
Xu, S. & Martín, M. P. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary-layers. Phys. Fluids 16 (7), 26232639.CrossRefGoogle Scholar
Yoshizawa, A. 1992 Statistical analysis of compressible turbulent shear flows with special emphasis on turbulence modeling. Phys. Rev. A 46, 32923306.CrossRefGoogle Scholar
Yoshizawa, A., Matsuo, Y. & Mizobuchi, Y. 2013 A construction of the Reynolds-averaged turbulence transport equations in a variable-density flow, based on the concept of mass-weighted fluctuations. Phys. Fluids 25, 075105.CrossRefGoogle Scholar