Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-12T08:04:15.779Z Has data issue: false hasContentIssue false

Premixed turbulent flame speed in an oscillating disturbance field

Published online by Cambridge University Press:  27 November 2017

Luke J. Humphrey
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30313, USA
Benjamin Emerson
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30313, USA
Tim C. Lieuwen*
Affiliation:
School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30313, USA
*
Email address for correspondence: [email protected]

Abstract

This paper considers the manner in which turbulent premixed flames respond to a superposition of turbulent and narrowband disturbances. This is an important fundamental problem that arises in most combustion applications, as turbulent flames exist in hydrodynamically unstable flow fields and/or in confined systems with narrowband acoustic waves. This paper presents the first measurements of the sensitivity of the turbulent displacement speed to harmonically oscillating flame wrinkles. The flame is attached to a transversely oscillating, heated wire, resulting in the introduction of coherent, convecting wrinkles on the flame. The approach flow turbulence is varied systematically using a variable turbulence generator, enabling quantification of the effect of turbulent flow disturbances on the harmonic wrinkles. Mie scattering measurements are used to quantify the flame edge dynamics, while high speed particle image velocimetry is used to measure the flow field characteristics. By ensemble averaging the results, the ensemble-averaged flame edge and flow characteristics are recovered. For low turbulence intensities, sharp cusps are present in the negative curvature regions of the ensemble-averaged flame position, similar to laminar flames. These cusps are smoothed out at high turbulence intensities. The coherent, ensemble-averaged flame wrinkle amplitude decays with increasing turbulence intensity and with downstream distance. In addition, the ensemble-averaged turbulent flame speed is modulated in space and time. The most significant result of these measurements is the clear demonstration of the correlation between the ensemble-averaged turbulent flame speed and ensemble-averaged flame curvature, with the phase-dependent flame speed increasing in regions of negative curvature. These results have important implications on turbulent combustion physics and modelling, since quasi-coherent velocity disturbances are nearly ubiquitous in shear driven, high turbulent flows and/or confined systems with acoustic feedback. Specifically, these data clearly show that nonlinear interactions occur between the multi-scale turbulent disturbances and the more narrowband disturbances associated with coherent structures. In other words, conceptual models of the controlling physics in combustors with shear driven turbulence must account for the fundamentally different effects of spectrally distributed turbulent disturbances and more narrowband, quasi-coherent disturbances.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balachandran, R., Ayoola, B. O., Kaminski, C. F., Dowling, A. P. & Mastorakos, E. 2005 Experimental investigation of the nonlinear response of turbulent premixed flames to imposed inlet velocity oscillations. Combust. Flame 143, 3755.CrossRefGoogle Scholar
Baum, M., Poinsot, T. J., Haworth, D. C. & Darabiha, N. 1994 Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 132.Google Scholar
Boyer, L. & Quinard, J. 1990 On the dynamics of anchored flames. Combust. Flame 82, 5165.CrossRefGoogle Scholar
Candel, S. & Poinsot, T. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70, 115.CrossRefGoogle Scholar
Chen, J. H. & Im, H. G. 1998 Correlation of flame speed with stretch in turbulent premixed methane/air flames. Symp. Intl Combust. 27, 819826.Google Scholar
Creta, F., Lamioni, R., Lapenna, P. E. & Troiani, G. 2016 Interplay of Darrieus–Landau instability and weak turbulence in premixed flame propagation. Phys. Rev. E 94, 053102.Google ScholarPubMed
Dowling, A. P. 1999 A kinematic model of a ducted flame. J. Fluid Mech. 394, 5172.CrossRefGoogle Scholar
Driscoll, J. F. 2008 Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34, 91134.CrossRefGoogle Scholar
Ducruix, S., Durox, D. & Candel, S. 2000 Theoretical and experimental determination of the transfer function of a laminar premixed flame. Proc. Combust. Inst. 28, 765773.CrossRefGoogle Scholar
Emerson, B., Mondragon, U., Acharya, V., Shin, D.-H., Brown, C., McDonell, V. & Lieuwen, T. 2013 Velocity and flame wrinkling characteristics of a transversely forced, bluff-body stabilized flame, part I: experiments and data analysis. Combust. Sci. Technol. 185, 10561076.Google Scholar
Fleifil, M., Annaswamy, A. M., Ghoneim, Z. A. & Ghoneim, A. F. 1996 Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. Combust. Flame 106, 487510.CrossRefGoogle Scholar
Gran, I. R., Echekki, T. & Chen, J. H. 1996 Negative flame speed in an unsteady 2-D premixed flame: A computational study. Symp. Intl Combust. 26, 323329.CrossRefGoogle Scholar
Hawkes, E. R. & Chen, J. H. 2004 Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames. Combust. Flame 138, 242258.Google Scholar
Hawkes, E. R. & Chen, J. H. 2006 Comparison of direct numerical simulation of lean premixed methane–air flames with strained laminar flame calculations. Combust. Flame 144, 112125.CrossRefGoogle Scholar
Hemchandra, S., Peters, N. & Lieuwen, T. 2011 Heat release response of acoustically forced turbulent premixed flames – role of kinematic restoration. Proc. Combust. Inst. 33, 16091617.Google Scholar
Hemchandra, S., Preetham & Lieuwen, T. C. 2007 Response of turbulent premixed flames to harmonic acoustic forcing. Proc. Combust. Inst. 31, 14271434.Google Scholar
Humphrey, L., Acharya, V., Shin, D. H. & Lieuwen, T. 2014 Technical note: Coordinate systems and integration limits for global flame transfer function calculations. Intl J. Spray Combust. Dyn. 6, 411416.CrossRefGoogle Scholar
Humphrey, L. J., Acharya, V. S., Shin, D.-H. & Lieuwen, T. C. 2017 Modeling the response of turbulent flames to harmonic forcing. Combust. Sci. Technol. 189, 187212.Google Scholar
Jiang, G.-S. & Peng, D. 2000 Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 21262143.CrossRefGoogle Scholar
Jones, B., Lee, J. G., Quay, B. D. & Santavicca, D. A. 2011 Flame response mechanisms due to velocity perturbations in a lean premixed gas turbine combustor. Trans ASME J. Engng Gas Turbines Power 133, 021503.Google Scholar
Kabiraj, L. & Sujith, R. I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.Google Scholar
Kashinath, K., Hemchandra, S. & Juniper, M. P. 2013 Nonlinear thermoacoustics of ducted premixed flames: The influence of perturbation convection speed. Combust. Flame 160, 28562865.Google Scholar
Kee, R. J. et al. 2011 CHEMKIN 10112. Reaction Design.Google Scholar
Kerl, J., Lawn, C. & Beyrau, F. 2013 Three-dimensional flame displacement speed and flame front curvature measurements using quad-plane PIV. Combust. Flame 160, 27572769.CrossRefGoogle Scholar
Kerstein, A. R., Ashurst, W. T. & Williams, F. A. 1988 Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37, 27282731.Google Scholar
Kornilov, V. N., Schreel, K. R. A. M. & de Goey, L. P. H. 2007 Experimental assessment of the acoustic response of laminar premixed Bunsen flames. Proc. Combust. Inst. 31, 12391246.Google Scholar
Law, C. K. & Sung, C. J. 2000 Structure, aerodynamics, and geometry of premixed flamelets. Prog. Energy Combust. Sci. 26, 459505.Google Scholar
Lieuwen, T. C. 2012 Unsteady Combustor Physics. Cambridge University Press.Google Scholar
Lieuwen, T. C. & Yang, V.(Eds) 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics.Google Scholar
Ling, L., Tianyi, Z., Lawrence, K. & Wei, Z. 2007 Ordinary least square regression, orthogonal regression, geometric mean regression and their applications in aerosol science. J. Phys: Conf. Ser. 78, 012084.Google Scholar
Lipatnikov, A. 2012 Fundamentals of Premixed Turbulent Combustion. CRC Press.Google Scholar
Lipatnikov, A. & Chomiak, J. 2007 Global stretch effects in premixed turbulent combustion. Proc. Combust. Inst. 31, 13611368.Google Scholar
Lipatnikov, A. N. & Sathiah, P. 2005 Effects of turbulent flame development on thermoacoustic oscillations. Combust. Flame 142, 130139.CrossRefGoogle Scholar
Magri, L. & Juniper, M. P. 2013 A Theoretical approach for passive control of thermoacoustic oscillations: application to ducted flames. Trans ASME J. Engng Gas Turbines Power 135, 091604.Google Scholar
Marshall, A., Venkateswaran, P., Noble, D., Seitzman, J. & Lieuwen, T. 2011 Development and characterization of a variable turbulence generation system. Exp. Fluids 51, 611620.Google Scholar
Matalon, M. 2009 Flame dynamics. Proc. Combust. Inst. 32, 5782.Google Scholar
Matalon, M. & Creta, F. 2012 The ‘turbulent flame speed’ of wrinkled premixed flames. C. R. Méc. 340, 845858.Google Scholar
Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.CrossRefGoogle Scholar
Otsu, N. 1979 A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 6266.Google Scholar
Peters, N., Wenzel, H. & Williams, F. A. 2000 Modification of the turbulent burning velocity by gas expansion. Proc. Combust. Inst. 28, 235243.Google Scholar
Petersen, R. E. & Emmons, H. W. 1961 Stability of laminar flames. Phys. Fluids 4, 456464.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. RT Edwards, Inc.Google Scholar
Preetham, S. H. & Lieuwen, T. 2008 Dynamics of laminar premixed flames forced by harmonic velocity disturbances. J. Propul. Power 24, 13901402.Google Scholar
Sankaran, R., Hawkes, E. R., Chen, J. H., Lu, T. & Law, C. K. 2007 Structure of a spatially developing turbulent lean methane-air Bunsen flame. Proc. Combust. Inst. 31, 12911298.Google Scholar
Santosh, H. & Sujith, R. 2005 Kinematic coupling effects on heat-release transfer function of a premixed flame. J. Propul. Power 21, 591599.Google Scholar
Searby, G., Truffaut, J.-M. & Joulin, G. 2001 Comparison of experiments and a nonlinear model equation for spatially developing flame instability. Phys. Fluids 13, 32703276.Google Scholar
Shanbhogue, S., Shin, D.-H., Hemchandra, S., Plaks, D. & Lieuwen, T. 2009 Flame-sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing. Proc. Combust. Inst. 32, 17871794.CrossRefGoogle Scholar
Shin, D.-H. & Lieuwen, T. 2012 Flame wrinkle destruction processes in harmonically forced, laminar premixed flames. Combust. Flame 159, 33123322.CrossRefGoogle Scholar
Shin, D. H. & Lieuwen, T. C. 2013 Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames. J. Fluid Mech. 721, 484513.Google Scholar
Shin, D.-H., Plaks, D. V., Lieuwen, T., Mondragon, U. M., Brown, C. T. & McDonell, V. G. 2011 Dynamics of a longitudinally forced, bluff body stabilized flame. J. Propul. Power 27, 105116.Google Scholar
Smith, G. P. et al. 1999 GRI-Mech 3.0 chemical mechanism. Available at: http://www.me.berkeley.edu/gri_mech/.Google Scholar
Sohrab, S. H., Ye, Z. Y. & Law, C. K. 1985 An experimental investigation on flame interaction and the existence of negative flame speeds. Symp. Intl Combust. 20, 19571965.Google Scholar
Tammisola, O. & Juniper, M. P. 2016 Coherent structures in a swirl injector at Re = 4800 by nonlinear simulations and linear global modes. J. Fluid Mech. 792, 620657.Google Scholar
Truffaut, J.-M. & Searby, G. 1999 Experimental Study of the Darrieus–Landau instability on an inverted-’V’ flame, and measurement of the Markstein number. Combust. Sci. Technol. 149, 3552.Google Scholar
Trunk, P. J., Boxx, I., Heeger, C., Meier, W., Böhm, B. & Dreizler, A. 2013 Premixed flame propagation in turbulent flow by means of stereoscopic PIV and dual-plane OH-PLIF at sustained kHz repetition rates. Proc. Combust. Inst. 34, 35653572.Google Scholar
Wang, H. Y., Law, C. K. & Lieuwen, T. 2009 Linear response of stretch-affected premixed flames to flow oscillations. Combust. Flame 156, 889895.Google Scholar
Wheeler, A. J. & Ganji, A. R. 1996 Introduction to Engineering Experimentation. Prentice Hall.Google Scholar
Williams, F. A. 1985 Turbulent combustion. In The Mathematics of Combustion (ed. Buckmaster, J. D.), pp. 267294. Society for Industrial and Applied Mathematics.Google Scholar

Humphrey et al. supplementary movie 1

Ensemble-averaged flame wrinkles, f0 = 750 Hz, ux,0=4.8 m/s, u'/ux,0 = 9.1%.

Download Humphrey et al. supplementary movie 1(Video)
Video 253.5 KB

Humphrey et al. supplementary movie 2

Ensemble-averaged flame wrinkles, f0= 1250 Hz, ux,0=7.2 m/s, u'/ux,0= 23.9%.

Download Humphrey et al. supplementary movie 2(Video)
Video 197 KB