Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-22T09:31:42.642Z Has data issue: false hasContentIssue false

Premixed flame propagation in a confining vessel with weak pressure rise

Published online by Cambridge University Press:  02 December 2011

Andrew P. Kelley
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
John K. Bechtold*
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
Chung K. Law
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

The propagation of a premixed flame inside of a confining vessel filled with combustible fluid is determined using large-activation-energy asymptotics. The flame structure is analysed assuming that spatial and temporal variations in the transverse direction are weak compared to those in the direction normal to the flame surface. The analysis considers weak pressure rise from confinement and also allows for mixtures that are both near and removed from stoichiometry, non-unity reaction orders, temperature-dependent transport coefficients, and general Lewis numbers. The resulting equations for flame propagation speed are expressed in a coordinate-free form and describe the evolution of an arbitrary shaped flame in a general confining flow. These expressions are specifically applied to the case of a spherical flame propagating inside a spherical chamber. The radius at which the confining vessel influences the flame propagation is determined and the various mechanisms influencing flame behaviour are discussed. The results give rise to a simplified asymptotic relationship that provides an improved equation that may be used to more accurately extrapolate unstretched laminar flame speeds from experimental measurements.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bechtold, J. K. & Matalon, M. 1999 Effects of stoichiometry on stretched premixed flames. Combust. Flame 119, 217232.CrossRefGoogle Scholar
2. Bechtold, J. K. & Matalon, M. 2000 Some new results on Markstein number predictions. 38th Aerospace Sciences Meeting & Exhibit, AIAA Paper 2000-0575.Google Scholar
3. Bouvet, N., Chauveau, C., Göklap, I. & Halter, F. 2011 Experimental studies of the fundamental flame speeds of syngas (H2/CO)/air mixtures. Proc. Combust. Inst. 33, 913920.CrossRefGoogle Scholar
4. Bradley, D., Hicks, R. A., Lawes, M., Sheppard, C. G. W. & Woolley, R. 1998 The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressure in an explosion bomb. Combust. Flame 115, 126144.CrossRefGoogle Scholar
5. Bradley, D. & Mitcheson, A. 1976 Mathematical solution for explosions in spherical vessels. Combust. Flame 26, 201217.CrossRefGoogle Scholar
6. Buckmaster, J. & Lee, C. J. 1992 The effects of confinement and heat loss on outwardly propagating spherical flames. Twenty-Fourth Symposium (Intl) on Combustion, pp. 45–51. The Combustion Institute.CrossRefGoogle Scholar
7. Buckmaster, J. D. 1977 Slowly varying laminar flames. Combust. Flame 28, 225239.CrossRefGoogle Scholar
8. Buckmaster, J. D. & Ludford, G. S. S. 1982 Theory of Laminar Flames. Cambridge University Press.CrossRefGoogle Scholar
9. Bush, W. B. & Fendell, F. E. 1970 Asymptotic analysis of laminar flame propagation for general Lewis numbers. Combust. Sci. Technol. 1, 421428.CrossRefGoogle Scholar
10. Chen, Z. 2011 On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combust. Flame 158, 291300.CrossRefGoogle Scholar
11. Chen, Z., Burke, M. P. & Ju, Y. 2009 Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames. Combust. Theor. Model. 13, 343364.CrossRefGoogle Scholar
12. Chen, Z. & Ju, Y. 2007 Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame. Combust. Theor. Model. 11, 427435.CrossRefGoogle Scholar
13. Clavin, P., Pelcé, P. & He, L. 1990 One-dimensional vibratory instability of planar flames propagating in tubes. J. Fluid Mech. 216, 299322.CrossRefGoogle Scholar
14. Dowdy, D. R., Smith, D. B., Taylor, S. C. & Williams, A. 1990 The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen/air mixtures. Twenty-Third Symposium (Intl) on Combustion, pp. 325–332. The Combustion Institute.CrossRefGoogle Scholar
15. Eschenback, R. C. & Agnew, J. T. 1958 Use of the constant-volume bomb technique for measuring burning velocity. Combust. Flame 2, 273285.CrossRefGoogle Scholar
16. Frankel, M. L. & Sivashinsky, G. I. 1984 On quenching of curved flames. Combust. Sci. Technol. 40, 257268.CrossRefGoogle Scholar
17. Halter, F., Tahtouh, T. & Mounaïm-Rousselle, C. 2010 Nonlinear effects of stretch on the flame front propagation. Combust. Flame 157, 18251832.CrossRefGoogle Scholar
18. Jerzembeck, S., Peters, N., Pepiot-Desjardins, P. & Pitsch, H. 2009 Laminar burning velocities at high pressure for primary reference fuels and gasoline: experimental and numerical investigation. Combust. Flame 156, 292301.CrossRefGoogle Scholar
19. Jomaas, G., Law, C. K. & Bechtold, J. K. 2007 On transition to cellularity in expanding spherical flames. J. Fluid Mech. 583, 126.CrossRefGoogle Scholar
20. Keller, D. & Peters, N. 1994 Transient pressure effects in the evolution equation for premixed flame fronts. Theor. Comput. Fluid Dyn. 6, 141159.CrossRefGoogle Scholar
21. Kelley, A. P. & Law, C. K. 2009 Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames. Combust. Flame 156, 18441851.CrossRefGoogle Scholar
22. Kelley, A. P., Smallbone, A. J., Zhu, D. L. & Law, C. K. 2011 Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: experimental determination, fuel similarity, and stretch sensitivity. Proc. Combust. Inst. 33, 963970.CrossRefGoogle Scholar
23. Lewis, B. & von Elbe, G. 1961 Combustion, Flames, and Explosions of Gases, 2nd edn. Academic.Google Scholar
24. Markstein, G. H. 1951 Experimental and theoretical studies of flame-front stability. J. Aeronaut. Sci. 18, 199209.CrossRefGoogle Scholar
25. Matalon, M. & Bechtold, J. K. 1987 Spherically expanding flames. Proc. 1987 ASME/JSME Thermal Engineering Joint Conference, vol. 1, pp. 95–101.Google Scholar
26. Matalon, M., Cui, C. & Bechtold, J. K. 2003 Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders. J. Fluid Mech. 487, 179210.CrossRefGoogle Scholar
27. Matalon, M. & Matkowsky, B. J. 1982 Flames as gasdynamic discontinuities. J. Fluid Mech. 124, 239259.CrossRefGoogle Scholar
28. Pelce, P. & Clavin, P. 1982 Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames. J. Fluid Mech. 124, 219237.CrossRefGoogle Scholar
29. Peters, N. & Ludford, G. S. S. 1983 The effect of pressure variations on premixed flames. Combust. Sci. Technol. 34, 331344.CrossRefGoogle Scholar
30. Raezer, S. D. 1961 The relationship between burning velocity and space velocity of a spherical combustion wave in a closed spherical chamber. Combust. Flame 5, 7780.CrossRefGoogle Scholar
31. Ronney, P. D. & Sivashinsky, G. I. 1989 A theoretical study of propagation and extinction of nonsteady spherical flame fronts. SIAM J. Appl. Maths 49 (4), 10291046.CrossRefGoogle Scholar
32. Singh, D., Nishiie, T. & Qiao, L. 2011 Experimental and kinetic modeling study of the combustion of n-decane, Jet-A, and S-8 in laminar premixed flames. Combusti. Sci. Technol. 183 (10).CrossRefGoogle Scholar
33. Sivashinsky, G. I. 1976 On a distorted flame front as a hydrodynamic discontinuity. Acta Astronaut. 3, 889918.CrossRefGoogle Scholar
34. Sivashinsky, G. I. 1979 Hydrodynamic theory of flame propagation in an enclosed volume. Acta Astronaut. 6, 631645.CrossRefGoogle Scholar
35. Togbé, C., Halter, F., Foucher, F., Mounaim-Rouseselle, C. & Dagaut, P. 2011 Experimental and detailed kinetic modelling study of 1-pentanol oxidation in a JSR and combustion in a bomb. Proc. Combust. Inst. 33, 367374.CrossRefGoogle Scholar
36. Williams, F. A. 1994 Combustion Theory, 2nd edn. Westview.Google Scholar
37. Wu, C. K. & Law, C. K. 1984 On the determination of laminar flame speeds from stretched flames. Twentieth Symposium (Intl) on Combustion, pp. 1941–1949. The Combustion Institute.CrossRefGoogle Scholar
38. Wu, X., Wang, M., Moin, P. & Peters, N. 2003 Combustion instability due to the nonlinear interaction between sound and flame. J. Fluid Mech. 497, 2353.CrossRefGoogle Scholar