Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T15:09:44.692Z Has data issue: false hasContentIssue false

Prediction of triple point trajectory on two-dimensional unsteady shock reflection over single surfaces

Published online by Cambridge University Press:  31 August 2022

He Wang
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Zhigang Zhai*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
*
Email address for correspondence: [email protected]

Abstract

The two-dimensional (2-D) unsteady shock reflection over a single wedge is studied theoretically and numerically, and the emphasis is placed on the trajectory of the triple point (TP). Skews’ relation and the three-shock theory are, respectively, used for determining the trajectory angles of the corner-generated disturbance and the TP, and, subsequently, a model capable of predicting the TP trajectory is established for 2-D unsteady shock reflections over a single wedge. Then, a systematically numerical study is carried out on the 2-D unsteady shock reflection over a single wedge, including five types of shock reflection with the wedge angle increased and five types of shock reflection with the wedge angle decreased. It is found that the Mach stem is always slightly concavely (convexly) curved for reflections with the wedge angle increased (decreased), which should be caused by corner-generated compression (rarefaction) waves propagating along the Mach stem. The new model reasonably predicts the TP trajectory in all the 2-D unsteady shock reflections, and its performance is related not only to the variation trend of the wedge angle (increase or decrease), but also to the type of shock and the initial wedge angle. Specifically, for the shock reflection with the wedge angle increased (decreased), the model generally provides a slightly better (worse) prediction if the TP trajectory angle calculated by the three-shock theory is compulsively modified. The shock-shock/expansion polar analysis presented can partially explain the model performance for predicting the TP trajectory.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ben-Dor, G. 2007 Shock Wave Reflection Phenomena. Springer-Verlag Press.Google Scholar
Ben-Dor, G., Dewey, J.M., McMillin, D.J. & Takayama, K. 1988 Experimental investigation of the asymptotically approached Mach reflection over the second surface in a double wedge reflection. Exp. Fluids 6, 429434.CrossRefGoogle Scholar
Ben-Dor, G., Dewey, J.M. & Takayama, K. 1987 The reflection of a plane shock wave over a double wedge. J.Fluid Mech. 176, 483520.CrossRefGoogle Scholar
Ben-Dor, G. & Takayama, K. 1985 Analytical prediction of the transition from Mach to regular reflection over cylindrical concave wedges. J.Fluid Mech. 158, 365380.CrossRefGoogle Scholar
Bryson, A.E. & Gross, R.W.F. 1961 Diffraction of strong shocks by cones, cylinders, and spheres. J.Fluid Mech. 10, 116.CrossRefGoogle Scholar
Chester, W. 1954 The quasi-cylindrical shock tube. Phil. Mag. 45, 12931301.CrossRefGoogle Scholar
Chisnell, R.F. 1957 The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J.Fluid Mech. 2, 286298.CrossRefGoogle Scholar
Cohen, A. & Skews, B. 2020 Very weak shock wave reflection off curved surfaces. Exp. Fluids 61, 174.CrossRefGoogle Scholar
Colella, P. & Henderson, L.F. 1990 The von Neumann paradox for the diffraction of weak shock waves. J.Fluid Mech. 213, 7194.CrossRefGoogle Scholar
Dewey, J.M. & McMillin, D.J. 1981 An analysis of the particle trajectories in spherical blast waves reflected from real and ideal surfaces. Can. J. Phys. 59, 13801390.CrossRefGoogle Scholar
Dewey, J.M. & McMillin, D.J. 1985 Observation and analysis of the Mach reflection of weak uniform plane shock waves. Part 1. Observations. J.Fluid Mech. 152, 4966.CrossRefGoogle Scholar
Dewey, J.M., McMillin, D.J. & Classen, D.F. 1977 Photogrammetry of spherical shocks reflected from real and ideal surfaces. J.Fluid Mech. 81, 701717.CrossRefGoogle Scholar
Geva, M., Ram, O. & Sadot, O. 2018 The regular reflection$\rightarrow$Mach reflection transition in unsteady flow over convex surfaces. J.Fluid Mech. 837, 4879.CrossRefGoogle Scholar
Gray, B. & Skews, B. 2017 Reflection of a converging cylindrical shock wave segment by a straight wedge. Shock Waves 27, 551563.CrossRefGoogle Scholar
Gruber, S. & Skews, B. 2013 Weak shock wave reflection from concave surfaces. Exp. Fluids 54, 1571.CrossRefGoogle Scholar
Guderley, K.G. 1962 The Theory of Transonic Flow. Pergamon Press.Google Scholar
Hakkaki-Fard, A. & Timofeev, E. 2012 On numerical techniques for determination of the sonic point in unsteady inviscid shock reflections. Intl J. Aerosp. Innovat. 4, 4152.CrossRefGoogle Scholar
Han, Z. & Yin, X. 1993 Shock Dynamics: Fluid Mechanics and its Application. Kluwer Academic Publishers and Science Press.CrossRefGoogle Scholar
Henderson, L.F., Vasilev, E.I., Ben-Dor, G. & Elperin, T. 2003 The wall-jetting effect in Mach reflection: theoretical consideration and numerical investigation. J.Fluid Mech. 479, 259286.CrossRefGoogle Scholar
Hornung, H. 1986 Regular and Mach reflection of shock waves. Annu. Rev. Fluid Mech. 18, 3358.CrossRefGoogle Scholar
Hornung, H.G., Oertel, H. & Sandeman, R.J. 1979 Transition to Mach reflexion of shock waves in steady and pseudo-steady flow with and without relaxation. J.Fluid Mech. 90, 541560.CrossRefGoogle Scholar
Hu, T.C.J. & Glass, I.I. 1986 Blast wave reflection trajectories from a height of burst. AIAA J. 24, 607610.CrossRefGoogle Scholar
Itoh, S., Okazaki, N. & Itaya, M. 1981 On the transition between regular and Mach reflection in truly non-stationary flows. J.Fluid Mech. 108, 383400.CrossRefGoogle Scholar
Kleine, H., Timofeev, E., Hakkaki-Fard, A. & Skews, B. 2014 The influence of Reynolds number on the triple point trajectories at shock reflection off cylindrical surfaces. J.Fluid Mech. 740, 4760.CrossRefGoogle Scholar
Koronio, E., Ben-Dor, G., Sadot, O. & Geva, M. 2020 Similarity in Mach stem evolution and termination in unsteady shock-wave reflection. J.Fluid Mech. 902, A1.CrossRefGoogle Scholar
Krassovskaya, I.V. & Berezkina, M.K. 2017 Mechanism of formation of reflection configurations over concave surfaces. Shock Waves 27, 431439.CrossRefGoogle Scholar
Li, H. & Ben-Dor, G. 1999 Interaction of two Mach reflections over concave double wedges-analytical model. Shock Waves 9, 259268.CrossRefGoogle Scholar
Li, M., Ding, J., Zhai, Z., Si, T., Liu, N., Huang, S. & Luo, X. 2020 On divergent Richtmyer-Meshkov instability of a light/heavy interface. J.Fluid Mech. 901, A38.CrossRefGoogle Scholar
Liang, S.M., Hsu, J.L. & Wang, J.S. 2001 Numerical study of cylindrical blast-wave propagation and reflection. AIAA J. 39, 11521158.CrossRefGoogle Scholar
Liang, S.M., Wang, J.S. & Chen, H. 2002 Numerical study of spherical blast-wave propagation and reflection. Shock Waves 12, 5968.CrossRefGoogle Scholar
Mach, E. 1878 Uber den Verlauf von Funkenwellen in der Ebene und im Raume. Sitz.ber. Akad. Wiss. Wien 78, 819838.Google Scholar
MacLucas, D., Skews, B. & Kleine, H. 2020 Shock wave interactions within concave cavities. Exp. Fluids 61, 88.CrossRefGoogle Scholar
Milton, B.E. 1975 Mach reflection using ray-shock theory. AIAA J. 13, 15311533.CrossRefGoogle Scholar
Ndebele, B.B. & Skews, B.W. 2018 The reflection of cylindrical shock wave segments on cylindrical concave wall segments. Shock Waves 28, 11851197.CrossRefGoogle Scholar
von Neumann, J. 1943 a Oblique reflection of shock. Explos. Res. Rep. 12. Navy Department, Bureau of Ordinance.Google Scholar
von Neumann, J. 1943 b Refraction, intersection and reflection of shock waves. NAVORD Rep. 203-45. Navy Department, Bureau of Ordinance.Google Scholar
Olim, M. & Dewey, J.M. 1992 A revised three-shock solution for the Mach reflection of weak shocks ($1.1 < M_i < 1.5$). Shock Waves 2, 167176.CrossRefGoogle Scholar
Shi, X., Zhu, Y., Yang, J. & Luo, X. 2019 Mach stem deformation in pseudo-steady shock wave reflections. J.Fluid Mech. 861, 407421.CrossRefGoogle Scholar
Skews, B.W. 1967 The shape of a diffracting shock wave. J.Fluid Mech. 29, 297304.CrossRefGoogle Scholar
Skews, B.W. & Ashworth, J.T. 2005 The physical nature of weak shock wave reflection. J.Fluid Mech. 542, 105114.CrossRefGoogle Scholar
Skews, B.W. & Kleine, H. 2007 Flow features resulting from shock wave impact on a cylindrical cavity. J.Fluid Mech. 580, 481493.CrossRefGoogle Scholar
Skews, B. & Kleine, H. 2009 Unsteady flow diagnostics using weak perturbations. Exp. Fluids 46, 6576.CrossRefGoogle Scholar
Skews, B.W. & Kleine, H. 2010 Shock wave interaction with convex circular cylindrical surfaces. J.Fluid Mech. 654, 195205.CrossRefGoogle Scholar
Skews, B.W., Li, G. & Paton, R. 2009 Experiments on Guderley Mach reflection. Shock Waves 19, 95102.CrossRefGoogle Scholar
Sturtevant, B. & Kulkarny, V.A. 1976 The focusing of weak shock waves. J.Fluid Mech. 73, 651671.CrossRefGoogle Scholar
Sun, M. & Takayama, K. 1999 Conservative smoothing on an adaptive quadrilateral grid. J.Comput. Phys. 150, 143180.CrossRefGoogle Scholar
Takayama, K. & Sasaki, M. 1983 Effects of radius of curvature and initial angle on the shock transition over concave and convex walls. Rep. Inst. High-Speed Mech. 46, 130.Google Scholar
Tesdall, A.M. & Hunter, J.K. 2002 Self-similar solutions for weak shock reflection. SIAM J. Appl. Maths 63, 4261.CrossRefGoogle Scholar
Tesdall, A.M., Sanders, R. & Keyfitz, B.L. 2008 Self-similar solutions for the triple point paradox in gasdynamics. SIAM J. Appl. Maths 68, 13601377.CrossRefGoogle Scholar
Vasil'ev, E.I. 1999 Four-wave scheme of weak Mach shock wave interaction under the von Neumann paradox conditions. Fluid Dyn. 34, 421427.Google Scholar
Vasil'ev, E.I., Elperin, T. & Ben-Dor, G. 2008 Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge. Phys. Fluids 20, 046101.CrossRefGoogle Scholar
Vasil'ev, E.I. & Kraiko, A.N. 1999 Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions. Comput. Maths Math. Phys. 39, 13351345.Google Scholar
Viero, D.P., Susin, F.M. & Defina, A. 2013 A note on weak shock wave reflection. Shock Waves 23, 505511.CrossRefGoogle Scholar
Wang, H. & Zhai, Z. 2020 On regular reflection to Mach reflection transition in inviscid flow for shock reflection on a convex or straight wedge. J.Fluid Mech. 884, A27.CrossRefGoogle Scholar
Wang, H., Zhai, Z. & Luo, X. 2021 Reflection of a converging shock over a double curved wedge. Shock Waves 31, 439455.CrossRefGoogle Scholar
Wang, H., Zhai, Z., Luo, X., Yang, J. & Lu, X. 2017 A specially curved wedge for eliminating wedge angle effect in unsteady shock reflection. Phys. Fluids 29, 086103.CrossRefGoogle Scholar
Whitham, G.B. 1957 A new approach to problems of shock dynamics. Part I. Two-dimensional problems. J.Fluid Mech. 2, 145171.CrossRefGoogle Scholar
Xie, P., Han, Z.Y. & Takayama, K. 2005 A study of the interaction between two triple points. Shock Waves 14, 2936.CrossRefGoogle Scholar
Yuan, X., Zhou, J., Mi, X. & Ng, H.D. 2020 Model for triple-point trajectory of shock reflection over cylindrical concave wedge. AIAA J. 58, 27702775.CrossRefGoogle Scholar
Zhai, Z., Liang, Y., Liu, L., Ding, J., Luo, X. & Zou, L. 2018 Interaction of rippled shock wave with flat fast-slow interface. Phys. Fluids 30, 046104.CrossRefGoogle Scholar
Zhai, Z., Ou, J. & Ding, J. 2019 a Coupling effect on shocked double-gas cylinder evolution. Phys. Fluids 31, 096104.CrossRefGoogle Scholar
Zhai, Z., Si, T., Luo, X. & Yang, J. 2011 On the evolution of spherical gas interfaces accelerated by a planar shock wave. Phys. Fluids 23, 084104.CrossRefGoogle Scholar
Zhai, Z., Si, T., Luo, X., Yang, J., Liu, C., Tan, D. & Zou, L. 2012 Parametric study of cylindrical converging shock waves generated based on shock dynamics theory. Phys. Fluids 24, 026101.CrossRefGoogle Scholar
Zhai, Z., Wang, M., Si, T. & Luo, X. 2014 On the interaction of a planar shock with a light polygonal interface. J.Fluid Mech. 757, 800816.CrossRefGoogle Scholar
Zhai, Z., Zhang, F., Zhou, Z., Ding, J. & Wen, C.Y. 2019 b Numerical study on Rayleigh-Taylor effect on cylindrically converging Richtmyer-Meshkov instability. Sci. China-Phys. Mech. Astron. 62, 124712.CrossRefGoogle Scholar
Zhang, F., Si, T., Zhai, Z., Luo, X., Yang, J. & Lu, X. 2016 Reflection of cylindrical converging shock wave over a plane wedge. Phys. Fluids 28, 086101.CrossRefGoogle Scholar
Zhou, Z., Ding, J., Zhai, Z., Cheng, W. & Luo, X. 2020 Mode coupling in converging Richtmyer-Meshkov instability of dual-mode interface. Acta Mechanica Sin. 36, 356366.CrossRefGoogle Scholar