Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T04:09:56.322Z Has data issue: false hasContentIssue false

Post-stall flow control on aerofoils by leading-edge flags

Published online by Cambridge University Press:  26 September 2023

Junchen Tan
Affiliation:
Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
Zhijin Wang
Affiliation:
Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
Ismet Gursul*
Affiliation:
Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
*
 Email address for correspondence: [email protected]

Abstract

Self-excited oscillations of flags attached at the leading edge of aerofoils have been investigated at post-stall angles of attack at a chord Reynolds number of 100 000. Significant increases in the time-averaged lift coefficient and stall angle have been observed for three aerofoils: one symmetric, one cambered and one with a sharp leading edge. The aerodynamic improvement is due to the periodic formation of vortices caused by the flag oscillations. When the flag is near the aerofoil surface, it is lifted upwards by the induced velocity of the growing vortex. As the flag moves up, the vortex grows in strength and reaches maximum circulation when the flag is furthest from the aerofoil surface and subsequently sheds. Flags with large stiffness exhibit better spatial and temporal coherence of flag oscillations than the compliant flags, resulting in a larger maximum lift coefficient and higher stall angle. For all aerofoils tested, the best lift enhancement with respect to the clean aerofoils is found when the angle of attack is 6° to 10° above the stall angle of the clean aerofoil. High lift is observed when the flags are locked in with the wake instability in a narrow frequency band, depending on the flag mass ratio and length.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathy, F.H. 1962 Flow over an inclined plate. Trans. ASME J. Basic Engng 84, 380388.CrossRefGoogle Scholar
Akcabay, D.T. & Young, Y.L. 2012 Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow. Phys. Fluids 24 (5), 054106.CrossRefGoogle Scholar
Alben, S. 2022 Dynamics of flags over wide ranges of mass and bending stiffness. Phys. Rev. Fluids 7 (1), 013903.CrossRefGoogle Scholar
Alben, S. & Shelley, M.J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100 (7), 074301.CrossRefGoogle Scholar
Allen, J.J. & Smits, A.J. 2001 Energy harvesting eel. J. Fluids Struct. 15 (3–4), 629640.CrossRefGoogle Scholar
Argentina, M. & Mahadevan, L. 2005 Fluid-flow-induced flutter of a flag. Proc. Natl Acad. Sci. USA 102 (6), 18291834.CrossRefGoogle ScholarPubMed
Bearman, P.W. 1984 Vortex shedding from oscillating bluff-bodies. Annu. Rev. Fluid Mech. 16, 195222.CrossRefGoogle Scholar
Bendat, J.S. & Piersol, A.G. 2000 Random Data: Analysis and Measurement Procedures, 3rd edn. Wiley.Google Scholar
Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Bleischwitz, R., de Kat, R. & Ganapathisubramani, B. 2017 On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect. J. Fluids Struct. 70, 214234.CrossRefGoogle Scholar
Bleischwitz, R., de Kat, R. & Ganapathisubramani, B. 2018 Near-wake characteristics of rigid and membrane wings in ground effect. J. Fluids Struct. 80, 199216.CrossRefGoogle Scholar
Chen, C., Seele, R. & Wygnanski, I. 2013 Flow control on a thick airfoil using suction compared to blowing. AIAA J. 51 (6), 14621472.CrossRefGoogle Scholar
Choi, J., Colonius, T. & Williams, D.R. 2015 Surging and plunging oscillations of an airfoil at low Reynolds number. J. Fluid Mech. 763, 237253.CrossRefGoogle Scholar
Cleaver, D.J., Wang, Z., Gursul, I. & Visbal, M.R. 2011 Lift enhancement by means of small-amplitude airfoil oscillations at low Reynolds numbers. AIAA J. 49 (9), 20182033.CrossRefGoogle Scholar
Connell, B. & Yue, D. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.CrossRefGoogle Scholar
Corke, T., Enloe, C. & Wilkinson, S. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505–29.CrossRefGoogle Scholar
Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97106.CrossRefGoogle Scholar
Fage, A. & Johansen, F.C. 1927 On the flow of air behind an inclined flat plate of infinite span. Proc. R. Soc. Lond. A 116, 170197.Google Scholar
Glezer, A., Amitay, M. & Honohan, A.M. 2005 Aspects of low- and high-frequency actuation for aerodynamic flow control. AIAA J. 43 (7), 15011511.CrossRefGoogle Scholar
Goza, A. & Colonius, T. 2017 A global mode analysis of flapping flags. In 10th International Symposium on Turbulence and Shear Flow Phenomena, Chicago, Illinois, USA. Begell House.CrossRefGoogle Scholar
Goza, A., Colonius, T. & Sader, J.E. 2018 Global modes and nonlinear analysis of inverted-flag flapping. J. Fluid Mech. 857, 312344.CrossRefGoogle Scholar
Greenblatt, D. & Wygnanski, I.J. 2000 The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36 (7), 487545.CrossRefGoogle Scholar
Gurka, R., Liberzon, A. & Hetsroni, G. 2006 POD of vorticity fields: a method for spatial characterization of coherent structures. Intl J. Heat Fluid Flow 27 (3), 416423.CrossRefGoogle Scholar
Gursul, I., Cleaver, D.J. & Wang, Z. 2014 Control of low Reynolds number flows by means of fluid-structure interactions. Prog. Aerosp. Sci. 64, 1755.CrossRefGoogle Scholar
Gursul, I. & Ho, C.M. 1992 High aerodynamic loads on an airfoil submerged in an unsteady stream. AIAA J. 30 (4), 11171119.CrossRefGoogle Scholar
Gursul, I., Lin, H. & Ho, C.M. 1994 Effects of time scale on lift of airfoils in an unsteady stream. AIAA J. 32 (4), 797801.CrossRefGoogle Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Karniadakis, G.E. & Triantafyllous, G.S. 1989 Frequency selection and asymptotic states in laminar wakes. J. Fluid Mech. 199, 441469.CrossRefGoogle Scholar
Kirchhoff, G. 1869 Zur Theorie Freier Flüssigkeitsstrahlen. Z. Angew. Math. Mech. 70, 289298.Google Scholar
Koch, W. 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vib. 99, 5383.CrossRefGoogle Scholar
Lachmann, G.V. 1961 Boundary Layer and Flow Control, pp. 196208. Pergamon.Google Scholar
McCroskey, M.J. 1982 Unsteady airfoils. Annu. Rev. Fluid Mech. 14 (1), 285311.CrossRefGoogle Scholar
Miranda, S., Vlachos, P.P., Telionis, D.P. & Zeiger, M.D. 2005 Flow control of a sharp-edged airfoil. AIAA J. 43 (4), 716726.CrossRefGoogle Scholar
Moffat, R.J. 1985 Using uncertainty analysis in the planning of an experiment. Trans. ASME J. Fluids Engng 107 (2), 173178.CrossRefGoogle Scholar
Mueller, T.J. & DeLaurier, J.D. 2003 Aerodynamics of small vehicles. Annu. Rev. Fluid Mech. 35 (1), 89111.CrossRefGoogle Scholar
Raju, R., Mittal, R. & Cattafesta, L. 2008 Dynamics of airfoil separation control using zero-net mass-flux forcing. AIAA J. 46, 31033115.CrossRefGoogle Scholar
Rayleigh, Lord 1876 Notes on hydrodynamics. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2 (13), 441447.CrossRefGoogle Scholar
Rojratsirikul, P., Genc, M.S., Wang, Z. & Gursul, I. 2011 Flow-induced vibrations of low aspect ratio rectangular membrane wings. J. Fluids Struct. 27 (8), 12961309.CrossRefGoogle Scholar
Rojratsirikul, P., Wang, Z. & Gursul, I. 2009 Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers. Exp. Fluids 46 (5), 859872.CrossRefGoogle Scholar
Rom, J. 1992 High Angle of Attack Aerodynamics: Subsonic, Transonic, and Supersonic Flows, pp. 861. Springer–Verlag.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary-Layer Theory, 7th edn, pp. 362390. McGraw Hill.Google Scholar
Seifert, A., Bachar, T., Koss, D., Shepshelovich, M. & Wygnanski, I. 1993 A tool to delay boundary layer separation. AIAA J. 31 (11), 20522060.CrossRefGoogle Scholar
Seifert, A., Darabi, A. & Wygnanski, I. 1996 Delay of airfoil stall by periodic excitation. J. Aircr. 33 (4), 691698.CrossRefGoogle Scholar
Shelley, M.J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43 (1), 449465.CrossRefGoogle Scholar
Shoele, K. & Mittal, R. 2016 Flutter instability of a thin flexible plate in a channel. J. Fluid Mech. 786, 2946.CrossRefGoogle Scholar
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl. Maths 45 (3), 561571.CrossRefGoogle Scholar
Song, A., Tian, X., Israeli, E., Galavo, R., Bishop, K., Swartz, S. & Breuer, K. 2008 Aeromechanics of membrane wings with implications for animal flight. AIAA J. 46 (8), 20962106.CrossRefGoogle Scholar
Tan, J., Wang, Z. & Gursul, I. 2021 Self-excited flag vibrations produce post-stall flow control. Phys. Rev. Fluids 6 (10), L102701.CrossRefGoogle Scholar
Taneda, S. 1968 Waving motions of flags. J. Phys. Soc. Japan 24 (2), 392401.CrossRefGoogle Scholar
Taylor, G., Wang, Z., Vardaki, E. & Gursul, I. 2007 Lift enhancement over flexible nonslender delta wings. AIAA J. 45 (12), 29792993.CrossRefGoogle Scholar
Turhan, B., Wang, Z. & Gursul, I. 2022 a Coherence of unsteady wake of periodical plunging airfoil. J. Fluid Mech. 938, A14.CrossRefGoogle Scholar
Turhan, B., Wang, Z. & Gursul, I. 2022 b Interaction of vortex streets with a downstream wing. Phys. Rev. Fluids 7, 094701.CrossRefGoogle Scholar
Van Oudheusden, B.W., Scarano, F., Van Hinsberg, N.P. & Watt, D.W. 2005 Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39 (1), 8698.CrossRefGoogle Scholar
Wang, Z. & Gursul, I. 2017 Lift enhancement of a flat-plate airfoil by steady suction. AIAA J. 55, 13551372.CrossRefGoogle Scholar
Wu, J.Z., Lu, X.Y., Denny, A.G., Fan, M. & Wu, J.M. 1998 Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371, 2158.CrossRefGoogle Scholar
Young, J. & Lai, J.C.S. 2007 Vortex lock-in phenomenon in the wake of a plunging airfoil. AAIA J. 45 (2), 485490.CrossRefGoogle Scholar
Zaman, K.B. 1992 Effect of acoustic excitation of stalled flows over and airfoil. AIAA J. 30 (6), 14921499.CrossRefGoogle Scholar
Zhang, Z., Wang, Z. & Gursul, I. 2020 Lift enhancement of a stationary wing in a wake. AIAA J. 58 (11), 46134619.CrossRefGoogle Scholar
Zhang, Z., Wang, Z. & Gursul, I. 2022 a Aerodynamic of a wing in turbulent bluff body wakes. J. Fluid Mech. 937, A37.CrossRefGoogle Scholar
Zhang, Z., Wang, Z. & Gursul, I. 2022 b Post-stall flow control with upstream flags. Exp. Fluids 63, 179.CrossRefGoogle Scholar