Published online by Cambridge University Press: 14 November 2007
The merging of a pair of symmetric, horizontally oriented vortices in unstratified and stably stratified viscous fluid is investigated. Two-dimensional numerical simulations are performed for a range of flow conditions. The merging process is resolved into four phases of development and key underlying physics are identified. In particular, the deformation of the vortices, explained in terms of the interaction of vorticity gradient, ∇ω, and rate of strain, S, leads to a tilt in ω contours in the vicinity of the center of rotation (a hyperbolic point). In the diffusive/deformation phase, diffusion of the vortices establishes the interaction between ∇ω and mutually induced S. During the convective/deformation phase, induced flow by filaments and, in stratified flow, baroclinically generated vorticity (BV), advects the vortices thereby modifying S, which, in general, may enhance or hinder the development of the tilt. The tilting and diffusion of ω near the center hyperbolic point causes ω from the core region to enter the exchange band where it is entrained. In the convective/entrainment phase, the vortex cores are thereby eroded and ultimately entrained into the exchange band, whose induced flow becomes dominant and transforms the flow into a single vortex. The critical aspect ratio, associated with the start of the convective/entrainment phase, is found to be the same for both the unstratified and stratified flows. In the final diffusive/axisymmetrization phase, the flow evolves towards axisymmetry by diffusion. In general, the effects of stratification depend on the ratio of the diffusive time scale (growth of cores) to the turnover time (establishment of BV), i.e. the Reynolds number. A crossover Reynolds number is found, above which convective merging is accelerated with respect to unstratified flow and below which it is delayed.