Published online by Cambridge University Press: 26 April 2006
Our concern is with the evolution of large-amplitude Tollmien-Schlichting waves in boundary-layer flows. In fact, the disturbances we consider are of a comparable size to the unperturbed state. We shall describe two-dimensional disturbances which are locally periodic in time and space. This is achieved using a phase equation approach of the type discussed by Howard & Kopell (1977) in the context of reaction-diffusion equations. We shall consider both large and O(1) Reynolds number flows though, in order to keep our asymptotics respectable, our finite-Reynolds-number calculation will be carried out for the asymptotic suction flow. Our large-Reynolds-number analysis, though carried out for Blasius flow, is valid for any steady two-dimensional boundary layer. In both cases the phase-equation approach shows that the wavenumber and frequency will develop shocks or other discontinuities as the disturbance evolves. As a special case we consider the evolution of constant frequency/wavenumber disturbances and show that their modulational instability is controlled by Burgers equation at finite-Reynolds-number and by a new integro-differential evolution equation at large-Reynolds-numbers. For the large Reynolds number case the evolution equation points to the development of a spatially localized singularity at a finite time.