Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T02:06:33.688Z Has data issue: false hasContentIssue false

Phase diagram of quasi-static immiscible displacement in disordered porous media

Published online by Cambridge University Press:  19 July 2019

Ran Hu*
Affiliation:
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, PR China
Tian Lan
Affiliation:
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, PR China
Guan-Ju Wei
Affiliation:
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, PR China
Yi-Feng Chen*
Affiliation:
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, PR China Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of the Ministry of Education, Wuhan University, Wuhan 430072, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Immiscible displacement in porous media is common in many practical applications. Under quasi-static conditions, the process is significantly affected by disorder of the porous media and the wettability of the pore surface. Previous studies have focused on wettability effects, but the impact of the interplay between disorder and contact angle is not well understood. Here, we combine microfluidic experiments and pore-scale simulations with theoretical analysis to study the impact of disorder on the quasi-static displacement from weak imbibition to strong drainage. We define the probability of overlap to link the menisci advancements to displacement patterns, and derive a theoretical model to describe the lower and upper bounds of the cross-over zone between compact displacement and capillary fingering for porous media with arbitrary flow geometry at a given disorder. The phase diagram predicted by the theoretical model shows that the cross-over zone, in terms of contact angle range, expands as the disorder increases. The diagram further identifies four zones to elucidate that the impact of disorder depends on wettability. In zone I, increasing disorder destabilizes the patterns, and in zone II, a stabilizing effect plays a role, which is less significant than that in zone I. In the other two zones, invasion morphologies are compact and fingering, respectively, independent of both contact angle and disorder. We evaluate the proposed diagram using pore-scale simulations, experiments in this work and in the literature, confirming that the diagram can capture the effect of disorder on displacement under different wetting conditions. Our work extends the classical phase diagrams and is also of practical significance for engineering applications.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alava, M., Dubé, M. & Rost, M. 2004 Imbibition in disordered media. Adv. Phys. 53 (2), 83175.Google Scholar
Anderson, R., Zhang, L. & Ding, Y. 2010 A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells. J. Power Sources 195 (15), 45314553.Google Scholar
Armstrong, R. T. & Berg, S. 2013 Interfacial velocities and capillary pressure gradients during Haines jumps. Phys. Rev. E 88 (4), 043010.Google Scholar
Babchin, A., Brailovsky, I., Gordon, P. & Sivashinsky, G. 2008 Fingering instability in immiscible displacement. Phys. Rev. E 77 (2), 026301.Google Scholar
Bachu, S. 2015 Review of CO2 storage efficiency in deep saline aquifers. Intl J. Greenh. Gas Control 40, 188202.Google Scholar
Benson, S. M. & Cole, D. R. 2008 CO2 sequestration in deep sedimentary formations. Elements 4 (5), 325331.Google Scholar
Berg, S., Ott, H., Klapp, S. A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J. O. et al. 2013 Real-time 3D imaging of Haines jumps in porous media flow. Proc. Natl Acad. Sci. USA 110 (10), 37553759.Google Scholar
Bischofberger, I., Ramachandran, R. & Nagel, S. R. 2014 Fingering versus stability in the limit of zero interfacial tension. Nat. Commun. 5, 5265.Google Scholar
Borgman, O., Darwent, T., Segre, E., Goehring, L. & Holtzman, R. 2019 Immiscible fluid displacement in porous media with spatially correlated particle sizes. Adv. Water Resour. 128, 158167.Google Scholar
Borgman, O., Fantinel, P., Lühder, W., Goehring, L. & Holtzman, R. 2017 Impact of spatially correlated pore-scale heterogeneity on drying porous media. Water Resour. Res. 53 (7), 56455658.Google Scholar
Chapuis, O., Prat, M., Quintard, M., Chane-Kane, E., Guillot, O. & Mayer, N. 2008 Two-phase flow and evaporation in model fibrous media. J. Power Sources 178 (1), 258268.Google Scholar
Chaudhary, K., Cardenas, M. B., Wolfe, W. W., Maisano, J. A., Ketcham, R. A. & Bennett, P. C. 2013 Pore-scale trapping of supercritical CO2 and the role of grain wettability and shape. Geophys. Res. Lett. 40 (15), 38783882.Google Scholar
Chen, J. D. & Wilkinson, D. 1985 Pore-scale viscous fingering in porous media. Phys. Rev. Lett. 55 (18), 18921895.Google Scholar
Chen, Y.-F., Fang, S., Wu, D.-S. & Hu, R. 2017 Visualizing and quantifying the crossover from capillary fingering to viscous fingering in a rough fracture. Water Resour. Res. 53 (9), 77567772.Google Scholar
Chen, Y.-F., Wu, D.-S., Fang, S. & Hu, R. 2018 Experimental study on two-phase flow in rough fracture: phase diagram and localized flow channel. Intl J. Heat Mass Transfer 122, 12981307.Google Scholar
Cieplak, M. & Robbins, M. O. 1988 Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60 (20), 20422045.Google Scholar
Cieplak, M. & Robbins, M. O. 1990 Influence of contact angle on quasistatic fluid invasion of porous media. Phys. Rev. B 41 (16), 11508.Google Scholar
Concus, P. & Finn, R. 1969 On the behavior of a capillary surface in a wedge. Proc. Natl Acad. Sci. USA 63 (2), 292.Google Scholar
Cottin, C., Bodiguel, H. & Colin, A. 2011 Influence of wetting conditions on drainage in porous media: a microfluidic study. Phys. Rev. E 84 (2), 026311.Google Scholar
Dawson, H. E. & Roberts, P. V. 1997 Influence of viscous, gravitational, and capillary forces on dnapl saturation. Ground Water 35 (2), 261269.Google Scholar
Dong, M. & Chatzis, I. 1995 The imbibition and flow of a wetting liquid along the corners of a square capillary tube. J. Colloid Interface Sci. 172 (2), 278288.Google Scholar
Dvraam, D. G. & Payatakes, A. C. 1995 Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207236.Google Scholar
Ferrari, A., Jimenez-Martinez, J., Borgne, T. L., Méheust, Y. & Lunati, I. 2015 Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resour. Res. 51 (3), 13811400.Google Scholar
Geistlinger, H., Ataei-Dadavi, I., Mohammadian, S. & Vogel, H. J. 2015 The impact of pore structure and surface roughness on capillary trapping for 2-D and 3-D porous media. Water Resour. Res. 51, 90949111.Google Scholar
Girardo, S., Cingolani, R., Chibbaro, S., Diotallevi, F., Succi, S. & Pisignano, D. 2009 Corner liquid imbibition during capillary penetration in lithographically made microchannels. Appl. Phys. Lett. 94 (17), 171901.Google Scholar
Hecht, I. & Taitelbaum, H. 2004 Roughness and growth in a continuous fluid invasion model. Phys. Rev. E 70 (4), 046307.Google Scholar
Holtzman, R. 2016 Effects of pore-scale disorder on fluid displacement in partially-wettable porous media. Sci. Rep. 6, 36221.Google Scholar
Holtzman, R. & Juanes, R. 2010 Crossover from fingering to fracturing in deformable disordered media. Phys. Rev. E 82 (4), 046305.Google Scholar
Holtzman, R. & Segre, E. 2015 Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Phys. Rev. Lett. 115 (16), 164501.Google Scholar
Hu, R., Wan, J., Kim, Y. & Tokunaga, T. K. 2017a Wettability effects on supercritical CO2 cbrine immiscible displacement during drainage: pore-scale observation and 3D simulation. Intl J. Greenh. Gas Control 60, 129139.Google Scholar
Hu, R., Wan, J., Kim, Y. & Tokunaga, T. K. 2017b Wettability impact on supercritical CO2 capillary trapping: pore-scale visualization and quantification. Water Resour. Res. 53 (8), 63776394.Google Scholar
Hu, R., Wan, J., Yang, Z., Chen, Y.-F. & Tokunaga, T. 2018a Wettability and flow rate impacts on immiscible displacement: a theoretical model. Geophys. Res. Lett. 45 (7), 30773086.Google Scholar
Hu, R., Wu, D.-S., Yang, Z. & Chen, Y.-F. 2018b Energy conversion reveals regime transition of imbibition in a rough fracture. Geophys. Res. Lett. 45 (7), 89939002.Google Scholar
Jung, M., Brinkmann, M., Seemann, R., Hiller, T., Sanchez de La Lama, M. & Herminghaus, S. 2016 Wettability controls slow immiscible displacement through local interfacial instabilities. Phys. Rev. Fluids 1 (7), 074202.Google Scholar
King, P. R. 1987 The fractal nature of viscous fingering in porous media. J. Phys. A: Math. Gen. 20 (8), L529.Google Scholar
Koiller, B., Ji, H. & Robbins, M. O. 1992 Fluid wetting properties and the invasion of square networks. Phys. Rev. B 45 (14), 77627767.Google Scholar
Lee, H., Gupta, A., Hatton, T. A. & Doyle, P. S. 2017 Creating isolated liquid compartments using photopatterned obstacles in microfluidics. Phys. Rev. A 7 (4), 044013.Google Scholar
Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165187.Google Scholar
Lenormand, R., Zarcone, C. & Sarr, A. 1983 Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech. 135, 337353.Google Scholar
Levaché, B. & Bartolo, D. 2014 Revisiting the Saffman–Taylor experiment: imbibition patterns and liquid-entrainment transitions. Phys. Rev. Lett. 113 (4), 044501.Google Scholar
Liu, H., Ju, Y., Wang, N., Xi, G. & Zhang, Y. 2015a Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Phys. Rev. E 92 (3), 033306.Google Scholar
Liu, H., Zhang, Y. & Valocchi, A. J. 2015b Lattice Boltzmann simulation of immiscible fluid displacement in porous media: homogeneous versus heterogeneous pore network. Phys. Fluids 27 (5), 052103.Google Scholar
Måløy, K. J., Feder, J. & Jøssang, T. 1985 Viscous fingering fractals in porous media. Phys. Rev. Lett. 55 (24), 2688.Google Scholar
Morrow, N. R. & Mason, G. 2001 Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 6 (4), 321337.Google Scholar
Odier, C., Levaché, B., Santanach-Carreras, E. & Bartolo, D. 2017 Forced imbibition in porous media: a fourfold scenario. Phys. Rev. Lett. 119 (20), 208005.Google Scholar
Paterson, L. 1981 Radial fingering in a Hele Shaw cell. J. Fluid Mech. 113, 513529.Google Scholar
Primkulov, B. K., Talman, S., Khaleghi, K., Rangriz Shokri, A., Chalaturnyk, R., Zhao, B., MacMinn, C. W. & Juanes, R. 2018 Quasistatic fluid–fluid displacement in porous media: invasion-percolation through a wetting transition. Phys. Rev. Fluids 3 (10), 104001.Google Scholar
Rabbani, H. S., Or, D., Liu, Y., Lai, C. Y., Lu, N. B., Datta, S. S., Stone, H. A. & Shokri, N. 2018 Suppressing viscous fingering in structured porous media. Proc. Natl Acad. Sci. USA 115 (19), 48334838.Google Scholar
Raeini, A. Q., Bijeljic, B. & Blunt, M. J. 2015 Modelling capillary trapping using finite-volume simulation of two-phase flow directly on micro-CT images. Adv. Water Resour. 83, 102110.Google Scholar
Roof, J. G. 1970 Snap-off of oil droplets in water-wet pores. SPE J. 10 (01), 8590.Google Scholar
Saffman, P. G. & Taylor, G. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312329.Google Scholar
Singh, K., Jung, M., Brinkmann, M. & Seemann, R. 2019 Capillary-dominated fluid displacement in porous media. Annu. Rev. Fluid Mech. 51, 429449.Google Scholar
Singh, K., Scholl, H., Brinkmann, M., Michiel, M. D., Scheel, M., Herminghaus, S. & Seemann, R. 2017 The role of local instabilities in fluid invasion into permeable media. Sci. Rep. 7, 444.Google Scholar
Toussaint, R., Løvoll, G., Méheust, Y., Måløy, K. J. & Schmittbuhl, J. 2005 Influence of pore-scale disorder on viscous fingering during drainage. Eur. Phys. Lett. 71 (4), 583589.Google Scholar
Trojer, M., Szulczewski, M. L. & Juanes, R. 2015 Stabilizing fluid–fluid displacements in porous media through wettability alteration. Phys. Rev. Appl. 3, 054008.Google Scholar
Van’t Veld, K. & Phillips, O. R. 2010 The economics of enhanced oil recovery: estimating incremental oil supply and CO2 demand in the Powder River basin. Energy J. 31 (4), 3155.Google Scholar
Wang, Y., Zhang, C., Wei, N., Oostrom, M., Wietsma, T. W., Li, X. & Bonneville, A. 2012 Experimental study of crossover from capillary to viscous fingering for supercritical CO2 water displacement in a homogeneous pore network. Environ. Sci. Technol. 47 (1), 212218.Google Scholar
Wang, Z., Chauhan, K., Pereira, J.-M. & Gan, Y. 2019 Disorder characterization of porous media and its effect on fluid displacement. Phys. Rev. Fluids 4, 034305.Google Scholar
Weislogel, M. M. & Lichter, S. 1998 Capillary flow in an interior corner. J. Fluid Mech. 373, 349378.Google Scholar
Xu, W., Ok, J. T., Xiao, F., Neeves, K. B. & Yin, X. 2014 Effect of pore geometry and interfacial tension on water–oil displacement efficiency in oil-wet microfluidic porous media analogs. Phys. Fluids 26 (9), 093102.Google Scholar
Yortsos, Y. C., Xu, B. & Salin, D. 1997 Phase diagram of fully developed drainage in porous media. Phys. Rev. Lett. 79 (23), 45814584.Google Scholar
Zacharoudiou, I., Chapman, E. M., Boek, E. S. & Crawshaw, J. P. 2017 Pore-filling events in single junction micro-models with corresponding lattice Boltzmann simulations. J. Fluid Mech. 824, 550573.Google Scholar
Zhang, C., Oostrom, M., Wietsma, T. W., Grate, J. W. & Warner, M. G. 2011 Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuels 25 (8), 34933505.Google Scholar
Zhao, B., MacMinn, C. W. & Juanes, R. 2016 Wettability control on multiphase flow in patterned microfluidics. Proc. Natl Acad. Sci. USA 113 (37), 1025110256.Google Scholar