Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T19:49:06.444Z Has data issue: false hasContentIssue false

Particle transport induced by internal wave beam streaming in lateral boundary layers

Published online by Cambridge University Press:  15 May 2019

E. Horne*
Affiliation:
LadHyX, CNRS, École Polytechnique, 91128 Palaiseau CEDEX, France Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
F. Beckebanze*
Affiliation:
Mathematical Institute, Utrecht University, P.O. Box 80010, 3508 TA Utrecht, The Netherlands
D. Micard
Affiliation:
LMFA UMR 5509 CNRS, Université de Lyon, École Centrale 69130 Écully Lyon, France Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
P. Odier
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
L. R. M. Maas
Affiliation:
Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
S. Joubaud
Affiliation:
Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Quantifying the physical mechanisms responsible for the transport of sediments, nutrients and pollutants in the abyssal sea is a long-standing problem, with internal waves regularly invoked as the relevant mechanism for particle advection near the sea bottom. This study focuses on internal-wave-induced particle transport in the vicinity of (almost) vertical walls. We report a series of laboratory experiments revealing that particles sinking slowly through a monochromatic internal wave beam experience significant horizontal advection. Extending the theoretical analysis by Beckebanze et al. (J. Fluid Mech., vol. 841, 2018, pp. 614–635), we attribute the observed particle advection to a peculiar and previously unrecognized streaming mechanism in the stratified boundary layer originating at the lateral walls. This vertical boundary layer streaming mechanism is most efficient for significantly inclined wave beams, when vertical and horizontal velocity components are of comparable magnitude. We find good agreement between our theoretical prediction and experimental results.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, M. H. 2003 Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 423, 159162.Google Scholar
Beckebanze, F., Brouzet, C., Sibgatullin, I. N. & Maas, L. R. M. 2018 Damping quasi-two-dimensional internal wave attractors by rigid-wall friction. J. Fluid Mech. 841, 614635.Google Scholar
Beckebanze, F. & Maas, L. R. M. 2016 Damping of 3d internal wave attractors by lateral walls. In Proceedings of the VIIIth International Symp. on Stratified Flows, pp. 16. University of California at San Diego.Google Scholar
Beckebanze, F., Raja, K. J. & Maas, L. R. M. 2019 Mean flow generation by three-dimensional non-linear internal wave beams. J. Fluid Mech. 864, 603626.Google Scholar
Bordes, G., Venaille, A., Joubaud, S., Odier, P. & Dauxois, T. 2012 Experimental observation of a strong mean flow induced by internal gravity waves. Phys. Fluids 24 (4), 086602.Google Scholar
Brouzet, C., Ermanyuk, E., Joubaud, S., Pillet, G. & Dauxois, T. 2017 Internal wave attractors: different scenarios of instability. J. Fluid Mech. 811, 544568.Google Scholar
Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V. & Dauxois, T. 2016 Internal wave attractors examined using laboratory experiments and 3D numerical simulations. J. Fluid Mech. 793, 109131.Google Scholar
Butman, B., Alexander, P. S., Scotti, A., Beardsley, R. C. & Anderson, S. P. 2006 Large internal waves in Massachusetts Bay transport sediments offshore. Cont. Shelf Res. 26 (17–18), 20292049.Google Scholar
Couston, L.-A., Lecoanet, D., Favier, B. & Le Bars, M. 2018 Order out of chaos: slowly reversing mean flows emerge from turbulently generated internal waves. Phys. Rev. Lett. 120 (24), 244505.Google Scholar
Dalziel, S. B., Hughes, G. O. & Sutherland, B. R. 2000 Whole-field density measurements by ‘synthetic schlieren’. Exp. Fluids 28 (4), 322335.Google Scholar
Dauxois, T., Joubaud, S., Odier, P. & Venaille, A. 2018 Instabilities of internal gravity wave beams. Annu. Rev. Fluid Mech. 50, 128.Google Scholar
Fan, B., Kataoka, T. & Akylas, T. R. 2018 On the interaction of an internal wavepacket with its induced mean flow and the role of streaming. J. Fluid Mech. 838, R1.Google Scholar
Fortuin, J. M. H. 1960 Theory and application of two supplementary methods of constructing density gradient columns. J. Polym. Sci. 44 (144), 505515.Google Scholar
Garrett, C. & Kunze, E. 2007 Internal tide generation in deep ocean. Annu. Rev. Fluid Mech. 39, 5787.Google Scholar
Gostiaux, L., Didelle, H., Mercier, S. & Dauxois, T. 2007 A novel internal waves generator. Exp. Fluids 42 (1), 123130.Google Scholar
Grisouard, N. & Bühler, O. 2012 Forcing of oceanic mean flows by dissipating internal tides. J. Fluid Mech. 708, 250278.Google Scholar
Grisouard, N., Leclair, M., Gostiaux, L. & Staquet, C. 2013 Large scale energy transfer from an internal gravity wave reflecting on a simple slope. Procedia IUTAM 8, 119128.Google Scholar
Hazewinkel, J.2010 Attractors in stratified fluids. PhD thesis, Utrecht University, The Netherlands.Google Scholar
Horne, E.2015 Transport properties of internal gravity waves. PhD thesis, Université de Lyon, France.Google Scholar
Hosegood, P., Bonnin, J. & van Haren, H. 2004 Solibore-induced sediment resuspension in the Faeroe–Shetland Channel. Geophys. Res. Lett. 31, 14.Google Scholar
Kataoka, T. & Akylas, T. R. 2015 One three-dimensional internal gravity wave beams and induced large-scale mean flows. J. Fluid Mech. 769, 621634.Google Scholar
King, B., Zhang, H. P. & Swinney, H. L. 2010 Tidal flow over three-dimensional topography generates out-of-forcing-plane harmonics. Geophys. Res. Lett. 37, L14606 15.Google Scholar
Kistovich, Y. V. & Chashechkin, Y. D. 1995a Reflection of packets of internal waves from a rigid plane in a viscous fluid. Atmos. Ocean. Phys. 30, 718724.Google Scholar
Kistovich, Y. V. & Chashechkin, Y. D. 1995b The reflection of beams of internal gravity waves at a flat rigid surface. Z. Angew. Math. Mech. 59, 579585.Google Scholar
Kistovich, Y. V. & Chashechkin, Y. D. 2001 Mass transport and the force of a beam of two-dimensional periodic internal waves. Z. Angew. Math. Mech. 65, 237242.Google Scholar
Lighthill, J. 1978 Acoustic streaming. J. Sound Vib. 61, 391418.Google Scholar
Longuet-Higgins, M. S. 1953 Mass transport in water waves. Phil. Trans. R. Soc. Lond. A 245 (903), 535581.Google Scholar
Mashayek, A., Ferrari, R., Merrifield, S., Ledwell, J. R., St Laurent, L. & Naveira Garabato, A. 2017 Topographic enhancement of vertical turbulent mixing in the Southern Ocean. Nature Commun. 8, 14197.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.Google Scholar
McDougall, T. J. & Ferrari, R. 2017 Abyssal upwelling and downwelling driven by near-boundary mixing. J. Phys. Oceanogr. 47 (2), 261283.Google Scholar
Mercier, M. J., Martinand, D., Mathur, M., Gostiaux, L., Peacock, T. & Dauxois, T. 2010 New wave generation. J. Fluid Mech. 657, 308334.Google Scholar
Oster, G. & Yamamoto, M. 1963 Density gradient techniques. Chem. Rev. 63 (3), 257268.Google Scholar
Ou, H. W. & Maas, L. R. M. 1986 Tidal-induced buoyancy flux and mean transverse circulation. Cont. Shelf Res. 5 (6), 611628.Google Scholar
Quaresma, L., Vitorino, J., Oliveira, A. & da Silva, J. C. B. 2007 Evidence of sediment resuspension by nonlinear internal waves on the western Portuguese mid-shelf. Mar. Ecology 246 (2–4), 123143.Google Scholar
Raja, K. J.2018 Internal waves and mean flow in the presence of topography. PhD thesis, University Grenoble Alpes, France.Google Scholar
Rayson, M. D., Ivey, G. N., Jones, N. L. & Fringer, O. B. 2018 Resolving high-frequency internal waves generated at an isolated coral atoll using an unstructured grid ocean model. Ocean Model. 122, 6784.Google Scholar
Renaud, A. & Venaille, A. 2019 Boundary streaming by internal waves. J. Fluid Mech. 858, 7190.Google Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33, 4365.Google Scholar
van Sebille, E., Griffies, S. M., Abernathey, R., Adams, T. P., Berloff, P., Biastoch, A., Blanke, B., Chassignet, E. P., Cheng, Y., Cotter, C. J. et al. 2018 Lagrangian ocean analysis: fundamentals and practices. Ocean Model. 121, 4975.Google Scholar
Semin, B., Facchini, G., Pétrélis, F. & Fauve, S. 2016 Generation of a mean flow by an internal wave. Phys. Fluids 28 (9), 096601.Google Scholar
Sutherland, B. R. 2010 Internal Gravity Waves. Cambridge University Press.Google Scholar
Sutherland, B. R., Dalziel, S. B., Hughes, G. O. & Linden, P. F. 1999 Visualization and measurement of internal waves by ‘synthetic schlieren’. Part 1. Vertically oscillating cylinder. J. Fluid Mech. 390, 93126.Google Scholar
Tabaei, A. & Akylas, T. R. 2003 Nonlinear internal gravity wave beams. J. Fluid Mech. 482, 141161.Google Scholar
Thorpe, S. A. 1997 On the interactions of internal waves reflecting from slopes. J. Phys. Oceanogr. 27 (9), 20722078.Google Scholar
Vasiliev, A. Y. & Chashechkin, Y. D. 2003 Generation of 3D periodic internal wave beams. Z. Angew. Math. Mech. 67, 397405.Google Scholar
Voisin, B. 2003 Limit states of internal wave beams. J. Fluid Mech. 496, 243293.Google Scholar
Woodson, C. B. 2018 The fate and impact of internal waves in nearshore ecosystems. Annu. Rev. Mar. Sci. 10 (1), 421441.Google Scholar
Wunsch, C. 1971 Note on some Reynolds stress effects of internal waves on slopes. Deep-Sea Res. 18, 583591.Google Scholar
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.Google Scholar
Zhou, Q. & Diamessis, P. J. 2015 Lagrangian flows within reflecting internal waves at a horizontal free-slip surface. Phys. Fluids 27 (12), 126601.Google Scholar