Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T04:19:11.690Z Has data issue: false hasContentIssue false

Particle resuspension by a periodically forced impinging jet

Published online by Cambridge University Press:  05 May 2017

Wen Wu*
Affiliation:
Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
Giovanni Soligo
Affiliation:
Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, Udine, 33100, Italia Institut für Strömungsmechanik und Wärmeübertragung, TU Wien, Wien, 1060, Austria
Cristian Marchioli
Affiliation:
Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, Udine, 33100, Italia
Alfredo Soldati
Affiliation:
Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, Udine, 33100, Italia Institut für Strömungsmechanik und Wärmeübertragung, TU Wien, Wien, 1060, Austria
Ugo Piomelli
Affiliation:
Department of Mechanical and Materials Engineering, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
*
Email address for correspondence: [email protected]

Abstract

When hovering over sandy terrain, the rotor of helicopters generates a downward jet that induces resuspension of dust and debris. We investigate the mechanisms that govern particle resuspension in such flow using an Eulerian–Lagrangian approach based on large-eddy simulation of turbulence. The wake generated by the helicopter is modelled as a vertical impinging jet, to which a sequence of periodically forced azimuthal vortices is superposed. The resulting flow field provides a unique range of flow scales with which the particles can interact. Downstream of the impingement region, layers of negative azimuthal vorticity (secondary vortices) form on the upwash side of the primary azimuthal (large-scale) vortices. These layers then detach from the surface together with the near-wall (small-scale) vortices populating the wall-jet region. We show how the dynamics of sediments is governed by its interaction with these structures. After initial lift off from the impingement surface, particles accumulate in regions where near-wall vortices roll around the impinging azimuthal vortex, forming rib-like structures that either propel particles away from the azimuthal vortex or entrap them in the shear layer between the azimuthal and secondary vortices. We demonstrate that these trapped particles are more likely to reach the outer flow region and generate a persistent cloud of airborne particles. We also show that, in a time-averaged sense, particle resuspension and deposition fluxes balance each other near the impingement surface.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Also at: Department of Fluid Mechanics, CISM, 33100 Udine, Italy.

References

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Badr, S., Gauthier, G. & Gondret, P. 2014 Erosion threshold of a liquid immersed granular bed by an impinging plane liquid jet. Phys. Fluids 26 (2), 023302.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J. K. 2010 The turbulent wall jet measurements and modeling. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Barth, T., Lecrivain, G. & Hampel, U. 2013 Particle deposition study in a horizontal turbulent duct flow using optical microscopy and particle size spectrometry. J. Aero. Sci. 60, 4754.CrossRefGoogle Scholar
Bergougnoux, L., Bouchet, G., Lopez, D. & Guazzelli, É. 2014 The motion of small spherical particles falling in a cellular flow field at low Stokes number. Phys. Fluids 26, 115.CrossRefGoogle Scholar
Bethke, N. & Dalziel, S. B. 2012 Resuspension onset and crater erosion by a vortex ring interacting with a particle layer. Phys. Fluids 24, 063301.CrossRefGoogle Scholar
Cerbelli, S., Giusti, A. & Soldati, A. 2001 Ade approach to predicting dispersion of heavy particle in wall-bounded turbulence. Intl J. Multiphase Flow 27 (5), 18611879.CrossRefGoogle Scholar
Colby, S.2005 Military spin. http://www.rotorandwing.com/2005/03/01/military-spin/, accessed: 2016-12-11.Google Scholar
Constantinescu, G. S. & Lele, S. K. 2002 A highly accurate technique for the treatment of flow equations at the polar axis in cylindrical coordinates using series expansions. J. Comput. Phys. 183 (1), 165186.CrossRefGoogle Scholar
Crowe, C., Sommerfeld, M. & Tsuji, M. 1998 Multiphase Flows with Droplets and Particles. CRC Press.Google Scholar
Dairay, T., Fortune, V., Lamballais, E. & Brizzi, L. E. 2015 Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362394.CrossRefGoogle Scholar
Davidson, L. 2009 Large eddy simulations: how to evaluate resolution. Intl J. Heat Fluid Flow 30 (5), 10161025.CrossRefGoogle Scholar
Dubrief, Y. & Delcayre, F. 2000 On coherent-vortex identification in turbulence. J. Turbul. 1, N11.Google Scholar
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20 (1), 169209.CrossRefGoogle Scholar
Ferenc, J.-S. & Néda, Z. 2007 On the size-distribution of Poisson Voronoi cells. Phys. A 385, 518526.CrossRefGoogle Scholar
Friess, H. & Yadigaroglu, G. 2002 Modelling of the resuspension of particle clusters from multilayer aerosol deposits with variable porosity. J. Aero. Sci. 33 (6), 883906.CrossRefGoogle Scholar
Geiser, J. & Kiger, K. T. 2011 Vortex ring breakdown induced by topographic forcing. J. Phys. Conf. Ser. 318 (6), 110.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & William, C. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
Ghosh, S.2010 Configurational effect on dust cloud formation and brownout. Master’s thesis, Iowa State University, Ames, Iowa, United States.Google Scholar
Goldasteh, I., Ahmadi, G. & Ferro, A. R. 2013 Monte Carlo simulation of micron size spherical particle removal and resuspension from substrate under fluid flows. J. Aero. Sci. 66, 6271.CrossRefGoogle Scholar
Henry, C. & Minier, J.-P. 2014 Progress in particle resuspension from rough surfaces by turbulent flows. Prog. Engng Combust. Sci. 45, 153.CrossRefGoogle Scholar
Huang, J. M. & Hsiao, F. B. 1999 On the mode development in the developing region of a plane jet. Phys. Fluids 11, 18471857.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear ow. J. Fluid Mech. 41, 248258.CrossRefGoogle Scholar
Hwang, S. D. & Cho, H. H. 2003 Effects of acoustic excitation positions on heat transfer and flow in axisymmetric impinging jet: main jet excitation and shear layer excitation. Intl J. Heat Fluid Flow 24 (2), 199209.CrossRefGoogle Scholar
Jasion, G. & Shrimpton, J. 2012 Prediction of brownout inception beneath a full-scale helicopter downwash. J. Am. Helicopter Soc. 57 (4), 113.CrossRefGoogle Scholar
Johnson, B., Leishman, J. G. & Sydney, A. 2010 Investigation of sediment entrainment using dual-phase, high-speed particle image velocimetry. J. Am. Helicopter Soc. 55 (4), 113.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995a Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Phys. Fluids 7 (5), 10951106.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1995b Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Phys. Fluids 7 (5), 11071121.CrossRefGoogle Scholar
Keating, A., Piomelli, U., Bremhorst, K. & Nešić, S. 2004 Large-eddy simulation of heat transfer downstream of a backward-facing step. J. Turbul. 5, 20, 1–27.CrossRefGoogle Scholar
Kiger, K. T., Corfman, K. & Mulinti, R. 2014 Effect of bed form evolution on sediment erosion and suspended load transport in an impinging jet. In Proceedings of the 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics, pp. 19. Springer.Google Scholar
Klein, M., Sadiki, A. & Janicka, J. 2003 A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186 (2), 652665.CrossRefGoogle Scholar
Kuerten, J. G. M. 2006 Subgrid modeling in particle-laden channel flow. Phys. Fluids 18, 025108.CrossRefGoogle Scholar
Lee, T. E., Leishman, J. G. & Ramasamy, M. 2010 Fluid dynamics of interacting blade tip vortices with a ground plane. J. Am. Helicopter Soc. 55 (2), 022005.CrossRefGoogle Scholar
Leishman, J. G. 2000 Principles of Helicopter Aerodynamics. Cambridge University Press.Google Scholar
Leonard, A. 1975 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. A 18, 237248.CrossRefGoogle Scholar
Liu, Y. H., Hirama, D. & Matsusaka, S. 2012 Particle removal process during application of impinging dry ice jet. J. Aero. Sci. 217, 607613.Google Scholar
Marchioli, C., Salvetti, M. V. & Soldati, A. 2008 Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows. Phys. Fluids 20 (4), 111.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Matsusaka, S. 2015 High-resolution analysis of particle deposition and resuspension in turbulent channel flow. Aerosol Sci. Tech. 49 (3), 739746.CrossRefGoogle Scholar
McLaughlin, J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224, 261274.CrossRefGoogle Scholar
Meneveau, C., Lund, T. S. & Cabot, W. H. 1996 A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353385.CrossRefGoogle Scholar
Mihailovic, D. T. & Gualtieri, C.(Eds) 2010 Advances in Environmental Fluid Mechanics. World Scientific.CrossRefGoogle Scholar
Miller, M. C., McCave, I. N. & Komar, P. D. 1977 Threshold of sediment motion under unidirectional currents. Sedimentology 24 (4), 507527.CrossRefGoogle Scholar
Mladin, E. C. & Zumbrunnen, D. A. 2000 Alterations to coherent flow structures and heat transfer due to pulsations in an impinging air-jet. Intl J. Thermal Sci. 39 (2), 236248.CrossRefGoogle Scholar
Mohseni, K. & Colonius, T. 2000 Numerical treatment of polar coordinate singularities. J. Comput. Phys. 157 (2), 787795.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids 22 (10), 110.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.CrossRefGoogle Scholar
Mulinti, R. & Kiger, K. T. 2012 Particle suspension by a forced jet impinging on a mobile sediment bed. In Proceedings of the 16th International Symposium on Applications of Laser Techniques to Fluid Mechanics, pp. 112. Springer.Google Scholar
Munro, R. J., Bethke, N. & Dalziel, S. B. 2009 Sediment resuspension and erosion by vortex rings. Phys. Fluids 21, 046601.CrossRefGoogle Scholar
Niño, Y. & Garcia, M. H. 1996 Experiments on particle–turbulence interactions in the near-wall region of an open channel flow: implications for sediment transport. J. Fluid Mech. 326, 285319.CrossRefGoogle Scholar
Olsson, M. & Fuchs, L. 1998 Large eddy simulations of a forced semi-confined circular impinging jet. Phys. Fluids 10, 476486.CrossRefGoogle Scholar
Orlanski, I. 1976 A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys. 21 (3), 251269.CrossRefGoogle Scholar
Özdemir, I. B. & Whitelaw, J. H. 1992 Impingement of an axisymmetric jet on unheated and heated flat plates. J. Fluid Mech. 240, 503532.CrossRefGoogle Scholar
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8 (10), 27332755.CrossRefGoogle Scholar
Phillips, C. & Brown, R. E. 2009 Eulerian simulation of the fluid dynamics of helicopter brownout. J. Aircraft 46 (4), 14161429.CrossRefGoogle Scholar
van Rijn, L. 1984 Sediment pick-up functions. J. Hydrol. Engng 110 (10), 14941502.CrossRefGoogle Scholar
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.CrossRefGoogle Scholar
Sato, H. 1960 The stability and transition of a two-dimensional jet. J. Fluid Mech. 7, 5380.CrossRefGoogle Scholar
Sbrizzai, F., Verzicco, R. & Soldati, A. 2009 Turbulent flow and dispersion of inertial particles in a confined jet issued by a long cylindrical pipe. Flow Turbul. Combust. 82 (1), 123.CrossRefGoogle Scholar
Schiller, L. & Naumann, Z. 1935 A drag coefficient correlation. Z. Ver. Deutsch. Ing. 77318.Google Scholar
Shields, A.1936 Application of similarity principles and turbulence research to bed-load movement. In Mitt. Preuss. Verschsanst., Berlin. Wasserbau Schiffbau (transl. W. P. Ott & J. C. Uchelen). California Institute of Technology, Pasadena, CA, Rep. No. 167.Google Scholar
Sutherland, B. R. & Dalziel, S. B. 2014 Bedload transport by a vertical jet impinging upon sediments. Phys. Fluids 26 (3), 035103.CrossRefGoogle Scholar
Syal, M., Govindarajan, B. & Leishman, J. G. 2010 Mesoscale sediment tracking methodology to analyze brownout cloud developments. In Proceedings of the AHS 66th Annual Forum, pp. 16441673.Google Scholar
Thomas, S.2013 A GPU-accelerated, hybrid FVM-RANS methodology for modeling rotorcraft brownout. PhD thesis, University of Maryland, College Park, Maryland, United States.Google Scholar
Wu, W. & Piomelli, U. 2015 Large-eddy simulation of impinging jets with embedded azimuthal vortices. J. Turbul. 16 (1), 4466.CrossRefGoogle Scholar
Wu, W. & Piomelli, U. 2016 Reynolds-averaged and wall-modelled large-eddy simulations of impinging jets with embedded azimuthal vortices. Eur. J. Mech. (B/Fluids) 55 (2), 348359.CrossRefGoogle Scholar
Ziskind, G. 2006 Particle resuspension from surfaces: revisited and re-evaluated. Rev. Chem. Engng 22 (1–2), 1123.CrossRefGoogle Scholar