Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T09:03:55.971Z Has data issue: false hasContentIssue false

Particle motions near the bottom in turbulent flow in an open channel

Published online by Cambridge University Press:  12 April 2006

B. Mutlu Sumer
Affiliation:
Technical University of Istanbul, Faculty of Civil Engineering, Tałkiłla, Taksim, Istanbul, Turkey
Beyhan Oguz
Affiliation:
Technical University of Istanbul, Faculty of Civil Engineering, Tałkiłla, Taksim, Istanbul, Turkey

Abstract

A photographic technique has been used to make observations of the motion of heavy suspended particles in an open channel with a smooth bottom. The observations showed that the path of an individual heavy particle consists of an alternation between upward and downward paths traced by the particle as it travels close to the bottom. The path records appear to reveal most of the flow patterns near the wall shown up by earlier visualization observations; the measured kinematical quantities concerning the particle motion are in accord with those of earlier observations (e.g. Nychas, Hershey & Brodkey 1973). Making use of the present observations and following Offen & Kline's (1975) model of the bursting process in turbulent boundary layers, an attempt was made to explain the mechanism of particle suspension close to the wall in turbulent flows.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1965 Proc. 2nd Austr. Conf. Hydraul. Fluid Mech. p. 19.
Batchelor, G. K., Binnie, A. M. & Phillips, O. M. 1955 Proc. Phys. Soc. B 68, 1095.
Brodkey, R. S., Wallace, J. M. & Eckelmann, H. 1974 J. Fluid Mech. 63, 209.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Elder, J. W. 1959 J. Fluid Mech. 5, 544.
Engelund, F. 1970 Basic Res. Prog. Rep. Hydraul. Lab., Tech. Univ. Denmark 21, 7.
Engelund, F. & Gravesen, H. 1972 Basic Res. Prog. Rep. Hydraul. Lab., Tech. Univ. Denmark 27, 33.
Grass, A. J. 1971 J. Fluid Mech. 50, 233.
Grass, A. J. 1974 Euromech 48, Inst. Hydrodyn. Hydraul. Engng Tech., Univ. Denmark, p. 33.
Henderson, F. M. 1966 Open Channel Flow. Macmillan.
Jackson, R. G. 1976 J. Fluid Mech. 77, 531.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. MIT Press.
Nychas, S. G., Hershey, H. C. & Brodkey, R. S. 1973 J. Fluid Mech. 61, 513.
Offen, G. R. & Kline, S. J. 1973 Experiments on the velocity characteristics of ‘bursts’ and on the interactions between the inner and outer regions of a turbulent boundary layer. Dept. Mech. Engng, Stanford Univ. Rep. MD-31.Google Scholar
Offen, G. R. & Kline, S. J. 1974 J. Fluid Mech. 62, 223.
Offen, G. R. & Kline, S. J. 1975 J. Fluid Mech. 70, 209.
Sumer, B. M. 1974 J. Fluid Mech. 65, 11.
Sumer, B. M. 1977 Hydraulic Problems Solved by Stochastic Methods. Proc. 2nd Int. IAHR Symp. Stochastic Hydraul., Lund (Sweden) (ed. P. Hjorth, L. Jönsson & P. Larsen), paper 9. Water Resources Publ., Fort Collins, Colorado.
Sutherland, A. J. 1967 J. Geophys. Res. 72, 6183.
Williams, P. B. & Kemp, P. H. 1971 Proc. A.S.C.E., J. Hydraul. Div. 97, 505.