Published online by Cambridge University Press: 20 April 2006
This study continues the investigation of particle motions near the bottom in a turbulent open channel flow, reported by Sumer & Oguz (1978; hereafter referred to as part 1). Paths of suspended heavy particles were recorded in three dimensions and in time, employing a stereo-photogrammetric system coupled with a stroboscope. In the case of smooth bottom, the measured kinematical quantities concerning the particle motions were found to be in accord with the available information on the ‘bursting process’. Agreement between the particle motion and the bursting process provided further support for the mechanism of particle suspension near the bottom proposed in part 1. Similar experiments were carried out when the bottom was rough. Comparison between the smooth- and rough-bottom cases could be made on the same basis as the flow Reynolds number as well as the particle properties were kept almost unchanged in both the smooth and rough boundary experiments. The observations showed that particle motions close to the rough bottom are very similar in character to those in the smooth-bottom case. The findings of the present paper suggested that the suspension mechanism given for the smooth-boundary flow could be extended to the rough-boundary case.