Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T16:04:42.009Z Has data issue: false hasContentIssue false

Particle clustering in periodically forced straining flows

Published online by Cambridge University Press:  10 April 2009

J. S. MARSHALL*
Affiliation:
School of Engineering, The University of Vermont, Burlington, Vermont 05405, USA
*
Email address for correspondence: [email protected]

Abstract

Numerous biomedical and industrial applications require separation or sorting of particles in systems in which it is undesirable to allow particle adhesion to a surface, such as a centrifuge wall and a filter fibre. Such systems typically involve either adhesive particles which could easily foul such surfaces or very delicate particles as is the case with suspensions of biological cells. The current study explores an approach for particle separation based on exposure to an oscillating straining flow, which would be typical for peristaltic and other types of contractive wall motions in a channel or tube. We find that particles immersed in an oscillating straining flow are attracted to the nodal points of the straining field, a phenomenon which we refer to as ‘oscillatory clustering’. A simplified theory of this process is developed for cases with isolated particles immersed in an unbounded uniform straining flow, in which the particle motion is found to be governed by a damped Mathieu equation. Moreover, the drift velocity imposed on particles through oscillatory clustering is sufficient to suspend them against a downward gravitational force in a limit-cycle oscillatory path. Theoretical approximations for the average suspension height and oscillation amplitude are obtained. A discrete-element method (DEM) for colliding and adhesive particles is then employed to examine oscillatory clustering for more realistic systems in which particles collide with each other and with container walls. The DEM is used to examine oscillatory clustering of a particle suspension in an oscillating box and for standing peristaltic waves in a channel, both with and without particle adhesion forces and gravitational forces.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bagi, K. & Kuhn, M. R. 2004 A definition of particle rolling in a granular assembly in terms of particle translations and rotations. J. Appl. Mech. 71, 493501.CrossRefGoogle Scholar
Bar-Cohen, Y. & Chang, Z. 2000 Piezoelectrically actuated miniature peristaltic pump. In Proc. SPIE Conf. on Smart Structures and Materials, Newport Beach, California.CrossRefGoogle Scholar
Brasseur, J. G., Corrsin, S. & Lu, N. Q. 1987 The influence of a peripheral layer of different viscosity on peristaltic pumping with Newtonian fluid. J. Fluid Mech. 174, 495519.CrossRefGoogle Scholar
Brown, B. P., Schrier, J. E., Berbaum, K. S., Shirazi, S. S. & Shulze-Delrieu, K. 1995 Haustral septations increase axial and radial distribution of luminal contents in glass models of the colon. Am. J. Physiol. 269, G706G709.Google ScholarPubMed
Chokshi, A., Tielens, A. G. G. M. & Hollenbach, D. 1993 Dust coagulation. Astrophys. J. 407, 806819.CrossRefGoogle Scholar
Cleary, P. W., Metcalfe, G. & Liffman, K. 1998 How well do discrete element granular flow models capture the essentials of mixing processes? Appl. Math. Mod. 22, 9951008.CrossRefGoogle Scholar
Di Felice, R. 1994 The voidage function for fluid–particle interaction systems. Intl J. Multiphase Flow 20, 153159.CrossRefGoogle Scholar
Dominik, C. & Tielens, A. G. G. M. 1995 Resistance to rolling in the adhesive contact of two elastic spheres. Philos. Mag. A 92 (3), 783803.CrossRefGoogle Scholar
Dominik, C. & Tielens, A. G. G. M. 1997 The physics of dust coagulation and the structure of dust aggregates in space. Astrophys. J. 480, 647673.CrossRefGoogle Scholar
Fauci, L. J. 1992 Peristaltic pumping of solid particles. Comp. Fluids 21 (4), 583598.CrossRefGoogle Scholar
Ferry, J., Rani, S. L. & Balachandar, S. 2003 A locally implicit improvement of the equilibrium Eulerian method. Intl J. Multiphase Flow 29, 869891.CrossRefGoogle Scholar
Gallego-Juárez, J. A., de Sarabia, E. R. F., Rodrígues-Corral, G., Hoffman, T., Gálvez-Moraleda, J. C., Rodrígues-Maroto, J. J., Gómez-Moreno, F. J., Bahillo-Ruiz, A., Martin-Espigares, M. & Acha, M. 1999 Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants. Environ. Sci. Technol. 33, 3943–3849.CrossRefGoogle Scholar
Gramiak, R., Ross, P. & Olmstead, W. W. 1971 Normal motor activity of the human colon: combined radiotelemetric manometry and slow-frame cineroentgenography. Am. J. Roentgenol. Radium Ther. Nucl. Med. 113 (2), 301309.CrossRefGoogle ScholarPubMed
Gunderson, H., Rigas, H. & van Vleck, F. S. 1974 A technique for determining stability regions for the damped Mathieu equation. SIAM J. Appl. Math. 26 (2), 345349.CrossRefGoogle Scholar
Hartley, F. T. 2000 Miniature peristaltic pump technology and applications. J. Advanced Mater. 32 (3), 1622.Google Scholar
Hertz, H. 1882 Über die Berührung fester elastische Körper. J. Reine Angew. Math. 92, 156171.CrossRefGoogle Scholar
Hung, T. K. & Brown, T. D. 1976 Solid-particle motion in two-dimensional peristaltic flows. J. Fluid Mech. 73, 7796.CrossRefGoogle Scholar
Jaffrin, M. Y. 1973 Inertia and streamline curvature effects on peristaltic pumping. Intl J. Engng Sci. 11 (6), 681699.CrossRefGoogle Scholar
Jaffrin, M. Y. & Shapiro, A. H. 1971 Peristaltic pumping. Annu. Rev.Fluid Mech. 3, 1336.CrossRefGoogle Scholar
Johnson, K. L., Kendall, K. & Roberts, A. D. 1971 Surface energy and the contact of elastic solids. Proc. R. Soc. London A 324, 301313.Google Scholar
Joseph, G. G., Zenit, R.Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle–wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.CrossRefGoogle Scholar
Jouet, P., Coffin, B., Lémann, M., Gorbatchef, C., Franchisseur, C., Jian, R.Rambaud, J.-C. & Flourié, B. 1998 Tonic and phasic motor activity in the proximal and distal colon of healthy humans. Am. J. Physiol. Gastrointest. Liver Physiol. 274, 459464.CrossRefGoogle ScholarPubMed
Kapishnikov, S., Kantsler, V. & Steinberg, V. 2006 Continuous particle size separation and size sorting using ultrasound in a microchannel. J. Stat. Mech., P01012.Google Scholar
King, L. V. 1934 On the acoustic radiation pressure on spheres. Proc. Royal Soc. London A 147, 212240.Google Scholar
Kuznetsova, L. A., Bazou, D. & Coakley, W. T. 2007 Stability of 2-D colloidal particle aggregates held against flow stress in an ultrasound trap. Langmuir 23, 30093016.CrossRefGoogle Scholar
Lew, H. S., Fung, Y. C. & Lowenstein, C. B. 1971 Peristaltic carrying and mixing of chyme in the small intestine (an analysis of a mathematical model of peristalsis of the small intestine). J. Biomech. 4, 297315.CrossRefGoogle ScholarPubMed
Li, M. & Brasseur, J. G. 1993 Nonsteady peristaltic transport in finite-length tubes. J. Fluid Mech. 248, 129152.CrossRefGoogle Scholar
Li, S. Q. & Marshall, J. S. 2007 Discrete-element simulation of micro-particle deposition on a cylindrical fiber in an array. J. Aerosol Sci. 38, 10311046.CrossRefGoogle Scholar
Marshall, J. S. 2006 Effect of shear-induced migration on the expulsion of heavy particles from a vortex core. Phys. Fluids 18 (11), 113301-1113301-12.CrossRefGoogle Scholar
Marshall, J. S. 2007 Particle aggregation and capture by walls in a particulate aerosol channel flow. J. Aerosol Sci. 38, 333351.CrossRefGoogle Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 24, 883889.CrossRefGoogle Scholar
McLachlan, N. W. 1951 Theory and Application of Mathieu Functions. Oxford University Press.Google Scholar
Mindlin, R. D. 1949 Compliance of elastic bodies in contact. J. Applied Mech. 16, 259268.CrossRefGoogle Scholar
Mousel, J. 2006 A computational investigation of particle aggregate growth in micro-nozzles using discrete-element modeling. MS thesis, University of Iowa.Google Scholar
Natarajan, S. & Mokhtarzadeh-Dehghan, 2000 Numerical prediction of flow in a model of a (potential) soft acting peristaltic blood pump. Intl J. Numer. Methods Fluids 32 (6), 711724.3.0.CO;2-K>CrossRefGoogle Scholar
Nguyen, N. T., Huang, X. & Chuan, T. K. 2002 MEMS-micropumps: a review. J. Fluids Enging 124, 384392.CrossRefGoogle Scholar
Pal, A. & Brasseur, J. G. 2000 There is more to longitudinal shortening than physiology. Gastroenterology 118 (4), A385A385.CrossRefGoogle Scholar
Pal, A. & Brasseur, J. G. 2002 The mechanical advantage of local longitudinal shortening on peristaltic transport. J. Biomech. Engng 124 (1), 94100.CrossRefGoogle ScholarPubMed
Pritchard, A. J. 1969 Stability of the damped Mathieu equation. Elec. Lett. 5 (26), 700701.CrossRefGoogle Scholar
Pozrikidis, C. 1987 A study of peristaltic flow. J. Fluid Mech. 180, 515527.CrossRefGoogle Scholar
Putz, R. & Pabst, R. 2000 Sobotta Atlas of Human Anatomy, vol. 2, 13th ed.Lippincott, Williams and Wilkins.Google Scholar
Ramachandra Rao, A. & Usha, S. 1995 Peristaltic transport of two immiscible viscous fluids in a circular tube. J. Fluid Mech. 298, 271285.Google Scholar
Rathish Kumar, B. V. & Naidu, K.B. 1995 A numerical study of peristaltic flows. Comput. Fluids 24 (2), 161176.CrossRefGoogle Scholar
Robe, T. R. & Jones, S. E. 1975 A numerical method for establishing Liapunov stability of linear second order non-autonomous dynamical systems. J. Inst. Math. Appl. 16, 109120.CrossRefGoogle Scholar
Savkoor, A. R. & Briggs, G. A. D. 1977 The effect of tangential force on the contact of elastic solids in adhesion. Proc. R. Soc. London A 356, 103114.Google Scholar
Schulze-Delrieu, K., Brown, B. P., Lange, W., Custer-Hagan, T., Lu, C., Shirazi, S. & Lepsien, G. 1996 Volume shifts, unfolding and rolling of haustra in the isolated guinea pig caecum. Neurogstroenterol. Mot. 8, 217225.CrossRefGoogle ScholarPubMed
Serayssol, J.-M. & Davis, R. H. The influence of surface interactions on the elastohydrodynamic collision of two spheres. J. Colloid Interface Sci. 114 (1), 54–66.CrossRefGoogle Scholar
Shapiro, A. H., Jaffrin, M. Y. & Weinberg, S. L. 1969 Perisaltic pumping with long wavelengths at low Reynolds numbers. J. Fluid Mech. 37, 799825.CrossRefGoogle Scholar
Shukla, J. B., Parihar, R. S., Rao, B. R. P. & Gupta, S. P. 1980 Effects of peripheral-layer viscosity on peristaltic transport of a bio-fluid. J. Fluid Mech. 97, 225237.CrossRefGoogle Scholar
Spengler, J. F., Jekel, M., Christensen, K. T., Adrian, R. J., Hawkes, J. J. & Coakley, W. T. 2001 Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field. Bioseparation 9, 329341.CrossRefGoogle Scholar
Srivastava, L. M. & Srivastava, V. P. 1989 Peristaltic transport of a particle-fluid suspension. J. Biomech. Engng 111 (2), 157165.CrossRefGoogle ScholarPubMed
Srivastava, V. P. & Srivastava, L. M. 1997 Influence of wall elasticity and Poiseuille flow on peristaltic induced flow of a particle-fluid mixture. Intl J. Engng Sci. 35 (15), 13591386.CrossRefGoogle Scholar
Takabatake, S. & Ayukawa, K. 1982 Numerical study of two-dimensional peristaltic flows. J. Fluid Mech. 122, 439465.CrossRefGoogle Scholar
Taylor, J. H. & Narendra, K. S. 1969 Stability regions for the damped Mathieu equation. SIAM J. Appl. Math. 17 (2), 343352.CrossRefGoogle Scholar
Thornton, C. 1991 Interparticle sliding in the presence of adhesion. J. Phys. D 24, 19421946.CrossRefGoogle Scholar
Tsuji, Y., Tanaka, T. & Ishida, T. 1992 Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239250.CrossRefGoogle Scholar
Usha, S. & Ramachandra Rao, A. 1997 Peristaltic transport of two-layered power-law fluids. J. Biomed. Engng 119 (4), 483488.Google ScholarPubMed
Usha, S. & Ramachandra Rao, A. 2000 Effects of curvature and inertia on the peristaltic transport in a two-fluid system. Intl J. Engng Sci. 38 (12), 13551375.CrossRefGoogle Scholar
Zhao, Y. & Marshall, J. S. 2008 Spin coating of a colloidal suspension. Phys. Fluids 20 (4), 043302-1043302-15.CrossRefGoogle Scholar