Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T17:46:54.855Z Has data issue: false hasContentIssue false

Parametric subharmonic instability of internal waves: locally confined beams versus monochromatic wavetrains

Published online by Cambridge University Press:  17 September 2014

Hussain H. Karimi
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
T. R. Akylas*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

Internal gravity wavetrains in continuously stratified fluids are generally unstable as a result of resonant triad interactions which, in the inviscid limit, amplify short-scale perturbations with frequency equal to one half of that of the underlying wave. This so-called parametric subharmonic instability (PSI) has been studied extensively for spatially and temporally monochromatic waves. Here, an asymptotic analysis of PSI for time-harmonic plane waves with locally confined spatial profile is made, in an effort to understand how such wave beams differ, in regard to PSI, from monochromatic plane waves. The discussion centres upon a system of coupled evolution equations that govern the interaction of a small-amplitude wave beam with short-scale subharmonic wavepackets in a nearly inviscid uniformly stratified Boussinesq fluid. For beams with general localized profile, it is found that triad interactions are not strong enough to bring about instability in the limited time that subharmonic perturbations overlap with the beam. On the other hand, for quasi-monochromatic wave beams whose profile comprises a sinusoidal carrier modulated by a locally confined envelope, PSI is possible if the beam is wide enough. In this instance, a stability criterion is proposed which, under given flow conditions, provides the minimum number of carrier wavelengths a beam of small amplitude must comprise for instability to arise.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67, 705722.Google Scholar
Bourget, B., Dauxois, T., Jouband, S. & Odier, P. 2013 Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 723, 120.Google Scholar
Bourget, B., Scolan, H., Dauxois, T., Le Bars, M., Odier, P. & Joubaud, S. 2014 Finite-size effects in parametric subharmonic instability. J. Fluid Mech. (in press).Google Scholar
Clark, H. A. & Sutherland, B. R. 2010 Generation, propagation, and breaking of an internal wave beam. Phys. Fluids 22, 076601.Google Scholar
Cole, S. T., Rudnick, D. L., Hodges, B. a. & Martin, J. P. 2009 Observations of tidal internal wave beams at Kauai Channel, Hawaii. J. Phys. Oceanogr. 39 (2), 421436.Google Scholar
Gerkema, T., Staquet, C. & Bouruet-Aubertot, P. 2006 Decay of semi-diurnal internal-tide beams due to subharmonic resonance. Geophys. Res. Lett. 33, L08604.Google Scholar
Gostiaux, L. & Dauxois, T. 2007 Laboratory experiments on the generation of internal tidal beams over steep slopes. Phys. Fluids 19 (2), 028102.Google Scholar
Hibiya, T., Nagasawa, M. & Niwa, Y. 2002 Nonlinear energy transfer within the oceanic internal wave spectrum at mid and high latitudes. J. Geophys. Res. 107 (C11), 3207.Google Scholar
Johnston, T. M. S., Rudnick, D. L., Carter, G. S., Todd, R. E. & Cole, S. T. 2011 Internal tidal beams and mixing near Monterey Bay. J. Geophys. Res. 116, C03017.Google Scholar
Karimi, H. H.2015 Doctoral dissertation. Department of Mechanical Engineering, MIT (in preparation).Google Scholar
Khatiwala, S. 2003 Generation of internal tides in an ocean of finite depth: analytical and numerical calculations. Deep-Sea Res. 50, 321.Google Scholar
Koudella, C. R. & Staquet, C. 2006 Instability mechanisms of a two-dimensional progressive internal gravity wave. J. Fluid Mech. 548, 165196.CrossRefGoogle Scholar
Lamb, K. G. 2004 Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography. Geophys. Res. Lett. 31, L09313.Google Scholar
Lien, R.-C. & Gregg, M. C. 2001 Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res. 106 (C3), 45754591.Google Scholar
MacKinnon, J. A., Alford, M. H., Sun, O., Pinkel, R., Zhao, Z. & Klymak, J. 2013 Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr. 43, 1728.Google Scholar
McEwan, A. D. 1973 Interactions between internal gravity waves and their traumatic effect on a continuous stratification. Boundary-Layer Meteorol. 5, 159175.Google Scholar
McEwan, A. D. & Plumb, R. A. 1977 Off-resonant amplification of finite internal wave packets. Dyn. Atmos. Oceans 2, 83105.Google Scholar
Mowbray, D. E. & Rarity, B. S. 1967 A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified fluid. J. Fluid Mech. 28, 116.CrossRefGoogle Scholar
Pairaud, I., Staquet, C., Sommeria, J. & Mahdizadeh, M. 2010 Generation of harmonics and sub-harmonics from an internal tide in a uniformly stratified fluid: numerical and laboratory experiments. In IUTAM Symposium on Turbulence in the Atmosphere and Oceans (ed. Dritschel, D.), vol. 28, pp. 5162. Springer.Google Scholar
Peacock, T., Echeverri, P. & Balmforth, N. J. 2008 An experimental investigation of internal tide generation by two-dimensional topography. J. Phys. Oceanogr. 38 (1), 235242.CrossRefGoogle Scholar
Phillips, O. M. 1981 Wave interactions—the evolution of an idea. J. Fluid Mech. 106, 215227.CrossRefGoogle Scholar
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34, 559593.CrossRefGoogle Scholar
Sutherland, B. R. 2013 The wave instability pathway to turbulence. J. Fluid Mech. 724, 14.Google Scholar
Sutherland, B. R., Dalziel, S. B., Hughes, G. O. & Linden, P. F. 1999 Visualization and measurement of internal waves by ‘synthetic schlieren’. Part 1. Vertically oscillating cylinder. J. Fluid Mech. 390, 93126.CrossRefGoogle Scholar
Sutherland, B. R. & Linden, P. F. 2002 Internal wave excitation by a vertically oscillating elliptical cylinder. Phys. Fluids 14 (2), 721731.Google Scholar
Tabaei, A. & Akylas, T. R. 2003 Nonlinear internal gravity wave beams. J. Fluid Mech. 482, 141161.Google Scholar
Young, W. R., Tsang, Y.-K. & Balmforth, N. J. 2008 Near-inertial parametric subharmonic instability. J. Fluid Mech. 607, 2549.CrossRefGoogle Scholar
Zhang, H. P., King, B. & Swinney, H. L. 2007 Experimental study of internal gravity waves generated by supercritical topography. Phys. Fluids 19, 096602.Google Scholar
Zhou, Q. & Diamessis, P. J. 2013 Reflection of an internal gravity wave beam off a horizontal free-slip surface. Phys. Fluids 25, 036601.Google Scholar