Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T12:09:17.240Z Has data issue: false hasContentIssue false

Parametric resonance in unsteady watertable flow

Published online by Cambridge University Press:  12 March 2015

Carlo Camporeale*
Affiliation:
Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Torino, Italy
Peter J. Schmid
Affiliation:
Department of Mathematics, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

The stability of unsteady open-channel flow down an inclined plane is studied using an iterative approach based on the direct and adjoint stability equations combined with a physically justified energy measure. An efficient parametric resonance mechanism has been identified between the exogenous base-flow oscillations and the intrinsic frequencies of streamwise disturbance vortices. This resonance results in strong amplification over a substantial range of the governing parameters, favouring streamwise elongated structures. The optimal frequency for a maximal disturbance response can be efficiently approximated from simpler steady calculations; two frequency-selection criteria are given for this purpose. The analysis generalizes earlier work on steady watertable flow and provides an effective framework and starting point for further work on pattern formation in harmonically forced open-channel flows.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anshus, B. E. & Goren, S. L. 1966 A method of getting approximate solutions to the Orr–Sommerfeld equation for flow on a vertical wall. AIChE J. 12, 10041008.Google Scholar
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554574.Google Scholar
Benney, D. J. 1966 Long waves in liquid films. J. Math. Phys. 45, 150155.Google Scholar
Brevdo, L., Laure, P., Dias, F. & Bridges, T. J. 1999 Linear pulse structure and signalling in a film flow on an inclined plane. J. Fluid Mech. 396, 3771.Google Scholar
Butler, K. M. & Farrel, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flows. Phys. Fluids A 4, 16371650.Google Scholar
Camporeale, C., Canuto, C. & Ridolfi, L. 2012 A spectral approach for the stability analysis of turbulent open-channel flows over granular beds. Theor. Comput. Fluid Dyn. 26, 5180.Google Scholar
Camporeale, C., Mantelli, E. & Manes, C. 2013 Interplay among unstable modes in films over permeable walls. J. Fluid Mech. 719, 527550.Google Scholar
Camporeale, C. & Ridolfi, L. 2009 Nonnormality and transient behavior of the de Saint-Venant-Exner equations. Water Resour. Res. 45 (8), W08418.Google Scholar
Camporeale, C. & Ridolfi, L. 2011 Modal versus nonmodal linear stability analysis of river dunes. Phys. Fluids 23, 104102.Google Scholar
Camporeale, C. & Ridolfi, L. 2012 Ice ripple formation at large Reynolds numbers. J. Fluid Mech. 694, 225251.CrossRefGoogle Scholar
Chang, H.-C. 1994 Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26, 103136.Google Scholar
Chang, H.-C. & Demekhin, E. A. 1995 Solitary wave formation and dynamics on a falling film. Adv. Appl. Mech. 32, 158.Google Scholar
Chang, H.-C. & Demekhin, E. A. 2002 Complex Wave Dynamics on Thin Films. Elsevier.Google Scholar
Chang, H.-C., Demekhin, E. A. & Kopelevich, D. I. 1993 Nonlinear evolution of waves on a vertically falling film. J. Fluid Mech. 250, 433480.Google Scholar
Cheng, M. & Chang, H.-C. 1992 Subharmonic instabilities of finite amplitude monochromatic waves. Phys. Fluids 4, 505523.Google Scholar
Chin, R. W., Aberhathy, F. F. & Bertschy, J. R. 1986 Gravity and shear wave stability of free surface flows. Part 1. Numerical calculations. J. Fluid Mech. 168, 501513.Google Scholar
Chu, K. J. & Dukler, A. E. 1974 Statistical characteristics of thin, wavy films. 2. Studies of substrate and its wave structure. AIChE J. 20 (4), 695706.Google Scholar
Coppola, G. & de Luca, L. 2006 On transient growth oscillations in linear models. Phys. Fluids 18, 078104,1–4.Google Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.Google Scholar
DeBruin, G. J. 1974 Stability of a layer of liquid flowing down an inclined plane. J. Engng Maths 8 (3), 259270.Google Scholar
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Floryan, J. M., Davis, S. H. & Kelly, R. E. 1987 Instabilities of a liquid-film flowing down a slightly inclined plane. Phys. Fluids 30 (4), 983989.Google Scholar
Hill, D. 1995 Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183204.Google Scholar
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. G. 2012 Falling Liquid Films, Series on Applied Mathematical Sciences. Springer.Google Scholar
Kapitsa, P. L. & Kapitsa, S. P. 1949 Wave flow of thin liquid layers. Zh. Eksp. Teor. Fiz. 19, 105120.Google Scholar
Lin, S. P. 1974 Finite amplitude side-band stability of viscous film. J. Fluid Mech. 63, 417429.Google Scholar
Liu, J. & Gollub, J. P. 1994 Solitary wave dynamics of film flows. Phys. Fluids 6 (5), 17021712.Google Scholar
Liu, J., Paul, J. D. & Gollub, J. P. 1993 Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69101.Google Scholar
Liu, J., Schneider, J. B. & Gollub, J. P. 1995 Three-dimensional instabilities of film flows. Phys. Fluids 7, 5567.Google Scholar
Nusselt, W. 1916 The surface condensation of water vapour. Z. Verein. Deutsch. Ing. 60, 541546.Google Scholar
Olsson, P. J. & Henningson, D. S. 1995 Optimal disturbance growth in water table flow. Stud. Appl. Maths 94, 183210.Google Scholar
Pierson, F. W. & Whitaker, S. 1977 Some theoretical and experimental observations of the wave structure of falling liquid films. Ind. Engng Chem. Fundam. 16, 401408.Google Scholar
Portalsky, S. & Clegg, A. J. 1972 Experimental study of wave inception on falling liquid films. Chem. Engng Sci. 27 (6), 12571265.Google Scholar
Pradas, M., Tseluiko, D. & Kalliadasis, S. 2011 Rigorous coherent-structure theory for falling liquid films: viscous dispersion effects on bound-state formation and self-organization. Phys. Fluids 23 (4), 044104.CrossRefGoogle Scholar
Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.Google Scholar
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech. 562, 183222.Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.Google Scholar
Schmid, P. J. & Henningson, D. S. 1994 Optimal energy density growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197225.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows, Applied Mathematical Sciences, vol. 142. Springer.Google Scholar
Schmid, P. J. & Henningson, D. S. 2014 Stability of shear flows. In VKI Lecture Notes ‘Progress in Flow Instability Analysis and Laminar–Turbulent Transition Modeling’ (in press).Google Scholar
Shen, J. 1994 Efficient spectral-Galerkin methods I. Direct solvers for the second and fourth order equations using Legendre polynomials. SIAM J. Sci. Comput. 15 (6), 1489.Google Scholar
Sivashinsky, G. I. & Michelson, D. M. 1980 On irregular wavy flow of a liquid-film down a vertical plane. Prog. Theoret. Phys. 63 (6), 21122114.Google Scholar
Snyder, R. E. 2010 What makes ecological systems reactive? Theor. Popul. Biol. 77, 243249.Google Scholar
Stokes, G. G. 1874 On the theory of oscillatory waves. Trans. Camb. Phil. Soc. 8, 441455.Google Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578.Google Scholar
Vesipa, R., Camporeale, C. & Ridolfi, L. 2012 A shallow-water theory of river bedforms in supercritical conditions. Phys. Fluids 24, 4094104.Google Scholar
Yecko, P. 2008 Disturbance growth in two-fluid channel flow: the role of capillarity. Intl J. Multiphase Flow 34, 272282.Google Scholar
Yih, C. S. 1955 Stability of two-dimensional parallel flows for three-dimensional disturbances. Q. Appl. Maths 12, 434435.Google Scholar
Yih, C. S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.Google Scholar

Camporeale and Schmid supplementary movie

Movie reporting the entire transient growth period showed from Fig.8 in the manuscript and discussed in section 5 for the WP with optimal initial condions. Upper left panel: lateral view; Upper right panel free surface; Lower left panel: frontal view; Lower right panel: depth perturbation in arbitrary scale (red) and growth function (blue)

Download Camporeale and Schmid supplementary movie(Video)
Video 13.1 MB