Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T21:26:00.674Z Has data issue: false hasContentIssue false

Pairwise interaction extended point-particle model for a random array of monodisperse spheres

Published online by Cambridge University Press:  26 January 2017

G. Akiki
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
T. L. Jackson
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
S. Balachandar*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
*
Email address for correspondence: [email protected]

Abstract

This study introduces a new point-particle force model that attempts to account for the hydrodynamic influence of the neighbouring particles in an Eulerian–Lagrangian simulation. In previous point-particle models the force on a particle depends only on Reynolds number and mean volume fraction. Thus, as long as the mean local volume fraction is the same, the force on different particles will be estimated to be the same, even though the precise arrangement of neighbours can be vastly different. From direct numerical simulation (DNS) it has been observed that in a random arrangement of spheres that were distributed with uniform probability, the particle-to-particle variation in force can be as large as the mean drag. Since the Reynolds number and mean volume fraction of all the particles within the array are the same, the standard models fail to account for the significant particle-to-particle force variation within the random array. Here, we develop a model which can compute the drag and lateral forces on each particle by accounting for the precise location of a few surrounding neighbours. A pairwise interaction is assumed where the perturbation flow induced by each neighbour is considered separately, then the effects of all neighbours are linearly superposed to obtain the total perturbation. Faxén correction is used to quantify the force perturbation due to the presence of the neighbours. The single neighbour perturbations are mapped in the vicinity of a reference sphere and stored as libraries. We test the pairwise interaction extended point-particle (PIEP) model for random arrays at two different volume fractions of $\unicode[STIX]{x1D719}=0.1$ and 0.21 and Reynolds numbers in the range $16.5\leqslant Re\leqslant 170$. The PIEP model predictions are compared against drag and lift forces obtained from the fully resolved DNS simulations performed using the immersed boundary method. Although not perfect, we observe the PIEP model prediction to correlate much better with the DNS results than the classical mean drag model prediction.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiki, G. & Balachandar, S. 2016 Immersed boundary method with non-uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. J. Comput. Phys. 307, 3459.Google Scholar
Akiki, G., Jackson, T. L. & Balachandar, S. 2016 Force variation within arrays of mono-disperse spherical particles. Phys. Rev. Fluids 1 (4), 044202.CrossRefGoogle Scholar
Auton, T. R. 1987 The lift force on a spherical body in a rotational flow. J. Fluid Mech. 183, 199218.Google Scholar
Auton, T. R., Hunt, J. C. R. & Prud’Homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.CrossRefGoogle Scholar
Ayala, O., Grabowski, W. W. & Wang, L. P. 2007 A hybrid approach for simulating turbulent collisions of hydrodynamically-interacting particles. J. Comput. Phys. 225 (1), 5173.CrossRefGoogle Scholar
Ayyalasomayajula, S., Gylfason, A., Collins, L. R., Bodenschatz, E. & Warhaft, Z. 2006 Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett. 97 (14), 144507.Google Scholar
Bagchi, P. & Balachandar, S. 2002a Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re . Phys. Fluids 14 (8), 27192737.Google Scholar
Bagchi, P. & Balachandar, S. 2002b Shear versus vortex-induced lift force on a rigid sphere at moderate Re . J. Fluid Mech. 473, 379388.Google Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.Google Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52 (02), 245268.CrossRefGoogle Scholar
Batchelor, G. K. & Green, J. T. 1972 The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56 (02), 375400.CrossRefGoogle Scholar
Beetstra, R., Van der Hoef, M. A & Kuipers, J. A. M. 2007 Drag force of intermediate Reynolds number flow past mono-and bidisperse arrays of spheres. AIChE J. 53 (2), 489501.Google Scholar
Bogner, S., Mohanty, S. & Rüde, U. 2015 Drag correlation for dilute and moderately dense fluid-particle systems using the lattice Boltzmann method. Intl J. Multiphase Flow 68, 7179.CrossRefGoogle Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111157.CrossRefGoogle Scholar
Brown, P. P. & Lawler, D. F. 2003 Sphere drag and settling velocity revisited. J. Environ. Engng 129 (3), 222231.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles. Academic.Google Scholar
Climent, E. & Maxey, M. R. 2009 The force coupling method: a flexible approach for the simulation of particulate flows. In Methods for Creeping Flows (ed. Feuillebois, F. & Sellier, A.). Ressign.Google Scholar
Cortese, T. A. & Balachandar, S. 1995 High performance spectral simulation of turbulent flows in massively parallel machines with distributed memory. Intl J. High Performance Comput. Appl. 9 (3), 187204.Google Scholar
Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M. & Tsuji, Y. 2011 Multiphase Flows with Droplets and Particles. CRC Press.Google Scholar
Darcy, H. 1856 Les Fontaines Publiques de la Ville de Dijon. Dalmont.Google Scholar
Faxén, H. 1922 Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Annalen der Physik 373 (10), 89119.Google Scholar
Gatignol, R. 1983 The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow. J. Méc. Théor. Appl. 2 (2), 143160.Google Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2015 Exact regularized point particle method for multiphase flows in the two-way coupling regime. J. Fluid Mech. 773, 520561.CrossRefGoogle Scholar
Guazzelli, E. & Morris, J. F. 2011 A Physical Introduction to Suspension Dynamics, vol. 45. Cambridge University Press.CrossRefGoogle Scholar
Gunjal, P. R., Ranade, V. V. & Chaudhari, R. V. 2005 Computational study of a single-phase flow in packed beds of spheres. AIChE J. 51 (2), 365378.CrossRefGoogle Scholar
Hill, R. J., Koch, D. L. & Ladd, A. J. 2001 Moderate-Reynolds-number flows in ordered and random arrays of spheres. J. Fluid Mech. 448, 243278.CrossRefGoogle Scholar
Horwitz, J. A. K. & Mani, A. 2016 Accurate calculation of Stokes drag for point–particle tracking in two-way coupled flows. J. Comput. Phys. 318, 85109.Google Scholar
Iliopoulos, I. & Hanratty, T. J. 1999 Turbulent dispersion in a non-homogeneous field. J. Fluid Mech. 392, 4571.CrossRefGoogle Scholar
Iliopoulos, I., Mito, Y. & Hanratty, T. J. 2003 A stochastic model for solid particle dispersion in a nonhomogeneous turbulent field. Intl J. Multiphase Flow 29 (3), 375394.Google Scholar
Keyser, M. J., Conradie, M., Coertzen, M. & Van Dyk, J. C. 2006 Effect of coal particle size distribution on packed bed pressure drop and gas flow distribution. Fuel 85 (10), 14391445.CrossRefGoogle Scholar
Khan, A. R. & Richardson, J. F. 1987 The resistance to motion of a solid sphere in a fluid. Chem. Engng Commun. 62 (1–6), 135150.CrossRefGoogle Scholar
Kim, I., Elghobashi, S. & Sirignano, W. A. 1998 On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers. J. Fluid Mech. 367 (1), 221253.Google Scholar
Kim, S. & Karrila, S. J. 2013 Microhydrodynamics: Principles and Selected Applications. Courier Corporation.Google Scholar
Lomholt, S. & Maxey, M. R. 2003 Force-coupling method for particulate two-phase flow: Stokes flow. J. Comput. Phys. 184 (2), 381405.CrossRefGoogle Scholar
Lovalenti, P. M. & Brady, J. F. 1993 The force on a sphere in a uniform flow with small-amplitude oscillations at finite Reynolds number. J. Fluid Mech. 256, 607614.Google Scholar
Magnaudet, J. & Eames, I. 2000 The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (1), 659708.CrossRefGoogle Scholar
Matsumura, Y. & Jackson, T. L. 2014a Numerical simulation of fluid flow through random packs of cylinders using immersed boundary method. Phys. Fluids 26 (4), 043602.Google Scholar
Matsumura, Y. & Jackson, T. L. 2014b Numerical simulation of fluid flow through random packs of polydisperse cylinders. Phys. Fluids 26 (12), 123302.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.CrossRefGoogle Scholar
Mei, R. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.CrossRefGoogle Scholar
Mito, Y. & Hanratty, T. J. 2002 Use of a modified Langevin equation to describe turbulent dispersion of fluid particles in a channel flow. Flow Turbul. Combust. 68 (1), 126.Google Scholar
Mittal, R. & Balachandar, S. 1996 Direct numerical simulation of flow past elliptic cylinders. J. Comput. Phys. 124 (2), 351367.Google Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2010 Preferential concentration of heavy particles: a Voronoi analysis. Phys. Fluids 22 (10), 103304.Google Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.Google Scholar
Ornstein, L. S. & Zernike, F. 1914 Accidental deviations of density and opalescence at the critical point of a single substance. Proc. R. Acad. Sci. (Amsterdam) 17 (2), 793806.Google Scholar
Percus, J. K. & Yevick, G. J. 1958 Analysis of classical statistical mechanics by means of collective coordinates. Phys. Rev. 110 (1), 113.CrossRefGoogle Scholar
Pinelli, A., Naqavi, I. Z., Piomelli, U. & Favier, J. 2010 Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J. Comput. Phys. 229 (24), 90739091.Google Scholar
Pruppacher, H. R. & Klett, J. D. 1997 Microphysics of Clouds and Precipitation: With an Introduction to Cloud Chemistry and Cloud Electricity. Springer.Google Scholar
Quintanilla, J. & Torquato, S. 1997 Local volume fraction fluctuations in random media. J. Chem. Phys. 106 (7), 27412751.CrossRefGoogle Scholar
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.CrossRefGoogle ScholarPubMed
Richardson, J. F. & Zaki, W. N. 1954 The sedimentation of a suspension of uniform spheres under conditions of viscous flow. Chem. Engng Sci. 3 (2), 6573.Google Scholar
Rubinow, S. I. & Keller, J. B. 1961 The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11 (03), 447459.Google Scholar
Saffman, P. G. T. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (02), 385400.CrossRefGoogle Scholar
Sangani, A. S., Zhang, D. Z. & Prosperetti, A. 1991 The added mass, Basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion. Phys. Fluids A 3 (12), 29552970.Google Scholar
Schanz, D., Gesemann, S. & Schröder, A. 2016 Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57 (5), 127.CrossRefGoogle Scholar
Schiller, L. & Naumann, A. 1933 Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Ver. Dtsch. Ing. 77 (12), 318320.Google Scholar
Sederman, A. J., Johns, M. L., Bramley, A. S., Alexander, P. & Gladden, L. F. 1997 Magnetic resonance imaging of liquid flow and pore structure within packed beds. Chem. Engng Sci. 52 (14), 22392250.Google Scholar
Stimson, M. & Jeffery, G. B. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111 (757), 110116.Google Scholar
Stoyan, D. & Stoyan, H. 1994 Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics. Wiley.Google Scholar
Suekane, T., Yokouchi, Y. & Hirai, S. 2003 Inertial flow structures in a simple-packed bed of spheres. AIChE J. 49 (1), 1017.Google Scholar
Tang, Y., Peters, E. A. J. F., Kuipers, J. A. M., Kriebitzsch, S. H. L. & Hoef, M. A. 2015 A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE J. 61 (2), 688698.Google Scholar
Tenneti, S., Garg, R. & Subramaniam, S. 2011 Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Intl J. Multiphase Flow 37 (9), 10721092.CrossRefGoogle Scholar
Tenneti, S., Mehrabadi, M. & Subramaniam, S. 2016 Stochastic Lagrangian model for hydrodynamic acceleration of inertial particles in gas–solid suspensions. J. Fluid Mech. 788, 695729.CrossRefGoogle Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.CrossRefGoogle Scholar
Wakaba, L. & Balachandar, S. 2005 History force on a sphere in a weak linear shear flow. Intl J. Multiphase Flow 31 (9), 9961014.CrossRefGoogle Scholar
Wang, L. P., Ayala, O. & Grabowski, W. W. 2005 Improved formulations of the superposition method. J. Atmos. Sci. 62 (4), 12551266.Google Scholar
Wertheim, M. S. 1963 Exact solution of the Percus–Yevick integral equation for hard spheres. Phys. Rev. Lett. 10 (8), 321.CrossRefGoogle Scholar
Yeo, K. & Maxey, M. R. 2010 Simulation of concentrated suspensions using the force-coupling method. J. Comput. Phys. 229 (6), 24012421.CrossRefGoogle Scholar
Zaidi, A. A., Tsuji, T. & Tanaka, T. 2014 A new relation of drag force for high Stokes number monodisperse spheres by direct numerical simulation. Adv. Powder Technol. 25 (6), 18601871.Google Scholar
Zuber, N. 1964 On the dispersed two-phase flow in the laminar flow regime. Chem. Engng Sci. 19 (11), 897917.CrossRefGoogle Scholar