Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-05-03T15:04:35.978Z Has data issue: false hasContentIssue false

Pair statistics of oblate spheroids settling in a turbulent flow

Published online by Cambridge University Press:  30 April 2025

Prateek Anand*
Affiliation:
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
Samriddhi Sankar Ray
Affiliation:
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
*
Corresponding author: Prateek Anand, [email protected]

Abstract

We perform direct numerical simulations of sub-Kolmogorov, inertial spheroids settling under gravity in homogeneous, isotropic turbulence, and find that small-scale clustering, measured via the correlation dimension, depends sensitively on the spheroid aspect ratio. In particular, such spheroids are shown to cluster more as their anisotropy increases. Further, the approach rate for pairs of spheroids is calculated and found to deviate significantly from the spherical-particle limit. Our study, spanning a range of Stokes numbers and aspect ratios, provides critical inputs for developing collision models to understand the dynamics of sedimenting, anisotropic particles in general, and ice crystals in clouds in particular.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allende, S. & Bec, J. 2023 Velocity and acceleration statistics of heavy spheroidal particles in turbulence. J. Fluid Mech. 967, R4.CrossRefGoogle Scholar
Anand, P., Ray, S.S. & Subramanian, G. 2020 Orientation dynamics of sedimenting anisotropic particles in turbulence. Phys. Rev. Lett. 125 (3), 034501.CrossRefGoogle ScholarPubMed
Ayala, O., Rosa, B., Wang, L.-P. & Grabowski, W.W. 2008 Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys. 10 (7), 075015.CrossRefGoogle Scholar
Baran, A.J. & Francis, P.N. 2004 On the radiative properties of cirrus cloud at solar and thermal wavelengths: a test of model consistency using high-resolution airborne radiance measurements. Q. J. R. Meteorol. Soc.: J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 130 (598), 763778.CrossRefGoogle Scholar
Bec, J. 2003 Fractal clustering of inertial particles in random flows. Phys. Fluids 15 (11), L81L84.CrossRefGoogle Scholar
Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F. 2007 Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett. 98 (8), 084502.CrossRefGoogle ScholarPubMed
Bec, J., Celani, A., Cencini, M. & Musacchio, S. 2005 Clustering and collisions of heavy particles in random smooth flows. Phys. Fluids 17 (7), 073301.CrossRefGoogle Scholar
Bec, J., Gustavsson, K. & Mehlig, B. 2024 Statistical models for the dynamics of heavy particles in turbulence. Annu. Rev. Fluid Mech. 56, 189213.CrossRefGoogle Scholar
Bec, J., Homann, H. & Ray, S.S. 2014 Gravity-driven enhancement of heavy particle clustering in turbulent flow. Phys. Rev. Lett. 112 (18), 184501.CrossRefGoogle ScholarPubMed
Bec, J., Musacchio, S. & Ray, S.S. 2013 Sticky elastic collisions. Phys. Rev. E 87 (6), 063013.CrossRefGoogle ScholarPubMed
Bec, J., Ray, S.S., Saw, E.W. & Homann, H. 2016 Abrupt growth of large aggregates by correlated coalescences in turbulent flow. Phys. Rev. E 93 (3), 031102(R).CrossRefGoogle ScholarPubMed
Bragg, A.D., Hammond, A.L., Dhariwal, R. & Meng, H. 2022 Hydrodynamic interactions and extreme particle clustering in turbulence. J. Fluid Mech. 933, A31.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.CrossRefGoogle Scholar
Bretherton, F.P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14 (2), 284304.CrossRefGoogle Scholar
Chevillard, L. & Meneveau, C. 2006 Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett. 97 (17), 174501.CrossRefGoogle ScholarPubMed
Chevillard, L. & Meneveau, C. 2013 Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence. J. Fluid Mech. 737, 571596.CrossRefGoogle Scholar
Cox, R.G. 1965 The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23 (4), 625643.CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech. 778, 133188.CrossRefGoogle Scholar
Dhanasekaran, J., Roy, A. & Koch, D.L. 2021 Collision rate of bidisperse, hydrodynamically interacting spheres settling in a turbulent flow. J. Fluid Mech. 912, A5.CrossRefGoogle Scholar
Erni, P., Cramer, C., Marti, I., Windhab, E.J. & Fischer, P. 2009 Continuous flow structuring of anisotropic biopolymer particles. Adv. Colloid Interface 150 (1), 1626.CrossRefGoogle ScholarPubMed
Falkovich, G., Fouxon, A. & Stepanov, M.G. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419 (6903), 151154.CrossRefGoogle ScholarPubMed
Grabowski, W.W. &Wang, L.-P. 2013 Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech. 45 (1), 293324.CrossRefGoogle Scholar
Gupta, A., Roy, A., Saha, A. & Ray, S.S. 2020 Flocking of active particles in a turbulent flow. Phys. Rev. Fluids 5 (5), 052601.CrossRefGoogle Scholar
Gupta, A., Vincenzi, D. & Pandit, R. 2014 Elliptical tracers in two-dimensional, homogeneous, isotropic fluid turbulence: the statistics of alignment, rotation, and nematic order. Phys. Rev. E 89 (2), 021001.CrossRefGoogle ScholarPubMed
Gustavsson, K., Jucha, J., Naso, A., Lévêque, E., Pumir, A. & Mehlig, B. 2017 Statistical model for the orientation of nonspherical particles settling in turbulence. Phys. Rev. Lett. 119 (25), 254501.CrossRefGoogle ScholarPubMed
Gustavsson, K., Sheikh, M.Z., Lopez, D., Naso, A., Pumir, A. & Mehlig, B. 2019 Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence. New J. Phys. 21 (8), 083008.CrossRefGoogle Scholar
Gustavsson, K., Sheikh, M.Z., Naso, A., Pumir, A. & Mehlig, B. 2021 Effect of particle inertia on the alignment of small ice crystals in turbulent clouds. J. Atmos. Sci. 78 (8), 25732587.CrossRefGoogle Scholar
Ireland, P.J., Bragg, A.D. & Collins, L.R. 2016 The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech. 796, 617658.CrossRefGoogle Scholar
James, M. & Ray, S.S. 2017 Enhanced droplet collision rates and impact velocities in turbulent flows: the effect of poly-dispersity and transient phases. Sci. Rep. 7 (1), 12231.CrossRefGoogle ScholarPubMed
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 101 (2), 161179.Google Scholar
Jiang, X., Xu, C. & Zhao, L. 2024 Settling and collision of spheroidal particles with an offset mass centre in a quiescent fluid. J. Fluid Mech. 984, A40.CrossRefGoogle Scholar
Jucha, J., Naso, A., Lévêque, E. & Pumir, A. 2018 Settling and collision between small ice crystals in turbulent flows. Phys. Rev. Fluids 3 (1), 014604.CrossRefGoogle Scholar
Khayat, R.E. & Cox, R.G. 1989 Inertia effects on the motion of long slender bodies. J. Fluid Mech. 209, 435462.CrossRefGoogle Scholar
Kim, S. & Karrila, S.J. 2013 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Liou, K.-N. 1986 Influence of cirrus clouds on weather and climate processes: a global perspective. Mon. Weather Rev. 114 (6), 11671199.2.0.CO;2>CrossRefGoogle Scholar
Lopez, D. & Guazzelli, E. 2017 Inertial effects on fibers settling in a vortical flow. Phys. Rev. Fluids 2 (2), 024306.CrossRefGoogle Scholar
Lundell, F., Söderberg, L.D. & Alfredsson, P.H. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43 (1), 195217.CrossRefGoogle Scholar
Mei, R. & Hu, K.C. 1999 On the collision rate of small particles in turbulent flows. J. Fluid Mech. 391, 6789.CrossRefGoogle Scholar
Moffet, R.C. & Prather, K.A. 2009 In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc. Natl Acad. Sci. USA 106 (29), 1187211877.CrossRefGoogle ScholarPubMed
Naso, A., Jucha, J., Lévêque, E. & Pumir, A. 2018 Collision rate of ice crystals with water droplets in turbulent flows. J. Fluid Mech. 845, 615641.CrossRefGoogle Scholar
Onishi, R., Takahashi, K. & Vassilicos, J.C. 2013 An efficient parallel simulation of interacting inertial particles in homogeneous isotropic turbulence. J. Comput. Phys. 242, 809827.CrossRefGoogle Scholar
Pedley, T.J. & Kessler, J.O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24 (1), 313358.CrossRefGoogle Scholar
Picardo, J.R., Agasthya, L., Govindarajan, R. & Ray, S.S. 2019 Flow structures govern particle collisions in turbulence. Phys. Rev. Fluids 4 (3), 032601.CrossRefGoogle Scholar
Pruppacher, H.R. & Klett, J.D. 2010 Microphysics of Clouds and Precipitation, 2nd edn. Springer Dordrecht.CrossRefGoogle Scholar
Pumir, A. & Wilkinson, M. 2011 Orientation statistics of small particles in turbulence. New J. Phys. 13 (9), 093030.CrossRefGoogle Scholar
Ray, S.S. 2018 Non-intermittent turbulence: Lagrangian chaos and irreversibility. Phys. Rev. Fluids (Rapid) 18 (11), 072601(R).CrossRefGoogle Scholar
Rosa, B., Wang, L.-P., Maxey, M.R. & Grabowski, W.W. 2011 An accurate and efficient method for treating aerodynamic interactions of cloud droplets. J. Comput. Phys. 230 (22), 81098133.CrossRefGoogle Scholar
Roy, A., Gupta, A. & Ray, S.S. 2018 Inertial spheroids in homogeneous, isotropic turbulence. Phys. Rev. E 98 (2), 021101.CrossRefGoogle ScholarPubMed
Roy, A., Hamati, R.J., Tierney, L., Koch, D.L. & Voth, G.A. 2019 Inertial torques and a symmetry breaking orientational transition in the sedimentation of slender fibres. J. Fluid Mech. 875, 576596.CrossRefGoogle Scholar
Sabban, L. & van Hout, R. 2011 Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol Sci. 42 (12), 867882.CrossRefGoogle Scholar
Saw, E.-W., Bewley, G.P., Bodenschatz, E., Ray, S.S. & Bec, J. 2014 Extreme fluctuations of the relative velocities between droplets in turbulent airflow. Phys. Fluids 26 (11), 111702.CrossRefGoogle Scholar
Shaw, R.A. 2003 Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35 (1), 183227.CrossRefGoogle Scholar
Sheikh, M.Z., Gustavsson, K., Lévêque, E., Mehlig, B., Pumir, A. & Naso, A. 2022 Colliding ice crystals in turbulent clouds. J. Atmos. Sci. 79 (9), 22052218.CrossRefGoogle Scholar
Sheikh, M.Z., Gustavsson, K., Lopez, D., Lévêque, E., Mehlig, B., Pumir, A. & Naso, A. 2020 Importance of fluid inertia for the orientation of spheroids settling in turbulent flow. J. Fluid Mech. 886, A9.CrossRefGoogle Scholar
Siewert, C., Kunnen, R.P.J., Meinke, M. & Schröder, W. 2014 a Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 4556.CrossRefGoogle Scholar
Siewert, C., Kunnen, R P J. & Schröder, W. 2014 b Collision rates of small ellipsoids settling in turbulence. J. Fluid Mech. 758, 686701.CrossRefGoogle Scholar
Smith, S.A. & Jonas, P.R. 1996 Observations of turbulence in cirrus clouds. Atmos. Res. 43 (1), 129.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249276.CrossRefGoogle Scholar
Wang, L.-P., Ayala, O. & Grabowski, W.W. 2007 Effects of aerodynamic interactions on the motion of heavy particles in a bidisperse suspension. J. Turbul. 8, N25.CrossRefGoogle Scholar
Wang, L.-P., Ayala, O., Kasprzak, S.E. & Grabowski, W.W. 2005 Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. J. Atmos. Sci. 62 (7), 24332450.CrossRefGoogle Scholar
Wang, L.-P. & Maxey, M.R. 1993 Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 2768.CrossRefGoogle Scholar
Wang, L.-P., Wexler, A.S. & Zhou, Y. 1998 On the collision rate of small particles in isotropic turbulence. I. Zero-inertia case. Phys. Fluids 10 (1), 266276.CrossRefGoogle Scholar
Yavuz, M.A., Kunnen, R.P.J., van Heijst, G.J.F. & Clercx, H.J.H. 2018 Extreme small-scale clustering of droplets in turbulence driven by hydrodynamic interactions. Phys. Rev. Lett. 120 (24), 244504.CrossRefGoogle ScholarPubMed