Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-19T03:17:19.430Z Has data issue: false hasContentIssue false

Oscillatory flows in ducts: a report on Euromech 73

Published online by Cambridge University Press:  11 April 2006

E. Brocher
Affiliation:
Institut de Mécanique des Fluides, Marseille, France

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
© 1977 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, C. & Ronneberger, D. 1971 Luftschalldaempfung in turbulent durchstroemten, schallharten Rohren bei verschiedenen Wand-rauhigkeiten. Acustica, 25, 150.Google Scholar
Anderson, J. S., Hiller, W. J., Jungowski, W. M. & Meier, G. E. A. On the oscillating transonic flow through a duct with sudden enlargement.
Beguier, C. 1972 Effet d'entrée d'une soufflerie en régime pulsé. C. R. Acad. Sci., Paris, A 274, 795.Google Scholar
Beguier, C., Ferrand, P. & Gineste, J. P. 1973 Recherches préliminaires, théoriques et expérimentales sur les corrélations entre les fluctuations de pression et de vitesse. J. Méc. 12, 581.Google Scholar
Beguier, C. & Russel, W. E. Système stationnaire en écoulement pulsé axisymétrique.
Bergh, H. & Tijdeman, H. 1965 Theoretical and experimental results for the dynamic response of pressure measuring systems. Nat. Aero- Astron. Res. Inst., Amsterdam Rep. NLR-TR F. 238.Google Scholar
Brocher, E. 1975 Heating rate of the driven gas in a Hartmann–Sprenger tube. A.I.A.A. J. 13, 1265.Google Scholar
Brocher, E. and Maresca, C. 1973 Etude des phénomènes thermiques dans un tube de Hartmann–Sprenger. Int. J. Heat Mass Transfer 16, 529.Google Scholar
Bushell, K. W. & Woods, W. A. Experiments on the interaction of finite amplitude compression and expansion waves with a stabilized shock wave.
Chester, W. Resonant oscillations in open and closed pipes.
Chester, W. 1964 Resonant oscillations in closed tubes. J. Fluid Mech. 18, 44.Google Scholar
Clarion, C. & Pélissier, R. 1975 A theoretical and experimental study of the velocity distribution and transition to turbulence in free oscillatory flow. J. Fluid Mech. 70, 59.Google Scholar
Dantan, P., de Jouvenel, F. & Oddou, C. Instabilités en écoulement pulsé à géométrie cylindrique.
Dantan, P., de Jouvenel, F. & Oddou, C. 1976a Transition laminaire-turbulent en écoulement pulsatile. Application à la circulation sanguine. J. Phys. Lett. 37, L 157.Google Scholar
Dantan, P., de Jouvenel, F. & Oddou, C. 1976b Stabilité d'un écoulement pulsé incompressible en tube cylindrique rigide. J. Phys. Lett. 37, L 233.Google Scholar
Disselhorst, H. Finite amplitude waves in open resonance tubes.
Doffin, J., Chagneau, F. & Borzeix, J. Etude théorique et expérimentale d'un écoulement oscillant dans une conduite axisymétrique comportant des déformations pariétales.
Durin, M. Etude expérimentale de la contrainte pariétale en écoulement pulsé et en conduit déformable.
Houdeville, R., Desopper, A. & Cousteix, J. Analyse expérimentale des grandeurs caractéristiques périodiques et turbulentes d'une couche limite en écoulement pulsé. Essai de prévision théorique.
Houdeville, R., Desopper, A. & Cousteix, J. 1976 Analyse expérimentale des caractéristiques moyennes et turbulentes d'une couche limite en écoulement pulsé. Recherche Aérospatiale, no. 1976–4.
Iwamoto, J. On thermal effects of Hartmann–Sprenger tubes with various internal geometries.
Jimenez, J. Nonlinear resonance in open tubes.
Jimenez, J. 1973 Nonlinear gas oscillations in pipe. Part 1. Theory. J. Fluid Mech. 59, 23.Google Scholar
Jonsson, I. G. Some characteristics of oscillatory rough turbulent boundary layer.
Jonsson, I. G. Similarity in oscillatory turbulent boundary layers. To be published.
Jonsson, I. G. & Carlsen, N. A. 1976 Experimental and theoretical investigations in an oscillatory turbulent boundary layer. J. Hydraul. Res. 14, 45.Google Scholar
Kawahashi, M. & Suzuki, M. Transient thermal phenomena and attainable limit of thermal effects in Hartmann–Sprenger tubes.
Keller, J. Subharmonic nonlinear acoustic resonances in closed tubes.
Keller, J. 1975 Subharmonic non-linear acoustic resonances in closed tubes. Z. angew. Math. Phys. 26, 395.Google Scholar
Kerczek, C. von & Davis, S. H. 1974 Linear stability theory of oscillatory Stokes layers. J. Fluid Mech. 62, 753.Google Scholar
Lebouche, M. & Martin, M. Effet des pulsations sur la recirculation en aval d'une marche bidimensionnelle en conduite.
Ly, D. P., Bellet, D. & Bousquet, A. Régimes transitoires d'écoulements non-permanents de fluides visqueux.
Mainardi, H., Barriol, R. & Panday, P. K. Etude des caractéristiques aérauliques d'un diaphragme noyé placé dans une canalisation lisse en écoulement turbulent pulsé.
Merkli, P. & Thomann, H. 1975 Transition to turbulence in oscillating pipe flow. J. Fluid Mech. 68, 567.Google Scholar
Mohring, W. Kelvin–Helmoltz instabilities of plug flow in a soft-walled duct.
Mortell, M. P. The evolution of nonlinear standing waves.
Péronneau, P. 1974 Techniques utilisées en vélocimétrie sanguine vélocimètres à émission continue et émission codée. Séminaire Technologique consacré à l'application de la Vélocimétrie Ultrasonore Doppler à l'Etude de l'Ecoulement Sanguin dans les Gros Vaisseaux, Paris. INSERM Publ., no. 89.
Péronneau, P., Sandman, W. & Xhaard, M. Etude expérimentale de la stabilité de l'éoulement en régime pulsatile.
Peube, J. L., Chassebiaux, G. & Ashok, K. Effets thermoacoustiques dans les résonateurs.
Peube, J. L., Tartarin, J. & Peube, J. Acoustique non linéaire dans un tuyau sonore ouvert.
Ribreau, C. Propagations d'ondes dans un conduit annulaire.
Ronneberger, D. Sound propagation in turbulent pipe flow with respect to the interaction of sound and turbulence.
Ronneberger, D. & Ahrens, C. 1977 Wall shear stress caused by small amplitude perturbations of turbulent flow – an experimental investigation. (To be published.)
Rosen, S. Investigation of Hartmann–Sprenger tubes for thermal ignition of hydrazinebased propellants.
Rott, N. & Zouzoulas, G. Thermally driven acoustic oscillations: survey of recent results.
Rott, N. & Zouzoulas, G. 1976a Thermally driven acoustic oscillations. Part IV. Tubes with variable cross-section. Z. angew. Math. Phys. 27, 197.Google Scholar
Rott, N. & Zouzoulas, G. 1976b Thermally driven acoustic oscillations, Part V. Gas–liquid oscillations. Z. angew. Math. Phys. 27, 325.Google Scholar
Seymour, B. R. & Mortell, M. P. 1973 Nonlinear resonant oscillations in open tubes. J. Fluid Mech. 60, 733.Google Scholar
Sturtevant, B. 1974 Nonlinear gas oscillations in pipes. Part 2. Experiment. J. Fluid Mech. 63, 97.Google Scholar
Teipel, I. The pulsating viscous flow of an incompressible dusty fluid in a circular pipe.
Teipel, I. 1976 Über den Annulareffekt in einer Flüssigkeit-Teilchen-Strömung. Z. angew. Math. Mech. 56, 117.Google Scholar
Tromans, P. The stability of oscillating pipe flow.
Tyvand, N. P. A theoretical analysis of the generation of higher harmonics in oscillatory flows in circular ducts.
Valk, M. Direct method for determining the amount of energy required to sustain a standing wave in a tube at the natural frequency, applied to measure the acoustic energy of a fluctuating flame.
Wijngaarden, L. van 1968 J. Engng Math. 2, 225.