Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-24T18:50:58.746Z Has data issue: false hasContentIssue false

Orientation of inertialess spheroidal particles in turbulent channel flow with spanwise rotation

Published online by Cambridge University Press:  31 October 2024

Dongming Chen
Affiliation:
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
Zhiwen Cui
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Wenjun Yuan*
Affiliation:
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
Lihao Zhao
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Helge I. Andersson
Affiliation:
Department of Marine Technology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
*
 Email address for correspondence: [email protected]

Abstract

The orientation dynamics of inertialess prolate and oblate spheroidal particles in a directly simulated spanwise-rotating turbulent channel flow has been investigated by means of an Eulerian–Lagrangian point-particle approach. The channel rotation and the particle shape were parameterized using a rotation number Ro and the aspect ratio λ, respectively. Eleven particle shapes 0.05 ≤ λ ≤ 20 and four rotation rates 0 ≤ Ro ≤ 10 have been examined. The spheroidal particles retained their almost isotropic orientation in the core region of the channel, despite the significant mean shear rate set up by the Coriolis force. Irrespective of channel rotation rate Ro, rod-like spheroids tend to align in the streamwise direction, while disk-like particles are oriented in the wall-normal direction. These trends were accentuated with increasing departure from sphericity λ = 1. The changeover from the isotropic orientation mode in the centre to the highly anisotropic near-wall orientation mode commenced further away from the suction-side wall with increasing Ro, whereas the particle orientations on the pressure side of the rotating channel remained essentially unaffected by Ro. We observed that the alignments of the fluid rotation vector with the Lagrangian stretching direction were similarly unaffected by the imposed system rotation, except that the de-alignment set in deeper into the core at high Ro. This contrasts with the well-known substantial impact of system rotation on the velocity and vorticity fields. Similarly, slender rods and flatter disks were aligned with the Lagrangian stretching and compression directions, respectively, for all Ro considered, except in the vicinity of the walls. The typical near-wall de-alignment extended considerably further away from the suction-side wall at high Ro. We conjecture that this phenomenon reflects a change in the relative importance of mean shear and small-scale turbulence caused by the Coriolis force. Preferential particle alignment with Lagrangian stretching and compression directions are known from isotropic and anisotropic turbulence in inertial reference systems. The present results demonstrate the validity of this principle also in a non-inertial system.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alipour, M., De Paoli, M., Ghaemi, S. & Soldati, A. 2021 Long non-axisymmetric fibres in turbulent channel flow. J. Fluid Mech. 916, A3.CrossRefGoogle Scholar
Andersson, H.I. 2010 Introduction to the effects of rotation on turbulence. In Effect of System Rotation on Turbulence with Applications to Turbomachinery (eds. M. Bilka & P. Ramboud). von Karman Institute for Fluid Dynamics. ISBN-13 978-2-87516-010-2.Google Scholar
Andersson, H.I., Zhao, L. & Variano, E.A. 2015 On the anisotropic vorticity in turbulent channel flows. J. Fluids Engng 137, 084503.CrossRefGoogle Scholar
Athavale, M.M., Li, H., Jiang, Y. & Singhal, A.K. 2002 Application of the full cavitation model to pumps and inducers. Intl J. Rotating Mach. 8, 4556.CrossRefGoogle Scholar
Baker, L.J. & Coletti, F. 2022 Experimental investigation of inertial fibres and disks in a turbulent boundary layer. J. Fluid Mech. 943, A27.CrossRefGoogle Scholar
Balachandar, S. 2009 A scaling analysis for point–particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35, 801810.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Challabotla, N.R., Nilsen, C. & Andersson, H.I. 2015 a On rotational dynamics of inertial disks in creeping shear flow. Phys. Lett. A 379, 157162.CrossRefGoogle Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2015 b Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2.CrossRefGoogle Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2015 c Shape effects on dynamics of inertia-free spheroids in wall turbulence. Phys. Fluids 27, 061703.CrossRefGoogle Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2016 On fiber behavior in turbulent vertical channel flow. Chem. Eng. Sci. 153, 7586.CrossRefGoogle Scholar
Cui, Z., Dubey, A., Zhao, L. & Mehlig, B. 2020 Alignment statistics of rods with the Lagrangian stretching direction in a channel flow. J. Fluid Mech. 901, A16.CrossRefGoogle Scholar
Cui, Z., Huang, W.-X., Xu, C.-X., Andersson, H.I. & Zhao, L. 2021 Alignment of slender fibers and thin disks induced by coherent structures of wall turbulence. Intl J. Multiphase Flow 145, 103837.CrossRefGoogle Scholar
Cui, Z. & Zhao, L. 2022 Shape-dependent regions for inertialess spheroids in turbulent channel flow. Phys. Fluids 34, 123316.CrossRefGoogle Scholar
Dotto, D. & Marchioli, C. 2019 Orientation, distribution, and deformation of inertial flexible fibers in turbulent channel flow. Acta Mechanica 230, 597621.CrossRefGoogle Scholar
Eaton, J.K. 2009 Two-way coupled turbulence simulations of gas-particle flows using point-particle tracking. Intl J. Multiphase Flow 35, 792800.CrossRefGoogle Scholar
Greenspan, H.P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Grundestam, O., Wallin, S. & Johansson, A.V. 2008 Direct numerical simulations of rotating turbulent channel flow. J. Fluid Mech. 598, 177199.CrossRefGoogle Scholar
Haller, G. 2015 Lagrangian coherent structures. Annu. Rev. Fluid Mech. 47, 137162.CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Jie, Y., Xu, C., Dawson, J.R., Andersson, H.I. & Zhao, L. 2019 a Influence of the quiescent core on tracer spheroidal particle dynamics in turbulent channel flow. J. Turbul. 20, 424438.CrossRefGoogle Scholar
Jie, Y., Zhao, L., Xu, C. & Andersson, H.I. 2019 b Preferential orientation of tracer spheroids in turbulent channel flow. Theor. Appl. Mech. Lett. 9, 212214.CrossRefGoogle Scholar
Johnston, J.P. 1998 Effects of system rotation on turbulence structure: a review relevant to turbomachinery flows. Intl J. Rotating Mach. 4, 97112.CrossRefGoogle Scholar
Johnston, J.P., Halleent, R.M. & Lezius, D.K. 1972 Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech. 56, 533557.CrossRefGoogle Scholar
Kristoffersen, R. & Andersson, H.I. 1993 Direct simulations of low-Reynolds-number turbulent flow in a rotating channel. J. Fluid Mech. 256, 163197.CrossRefGoogle Scholar
Kuerten, J.M. 2016 Point-particle DNS and LES of particle-laden turbulent flow - a state-of-the-art review. Flow Turbul. Combust. 97, 689713.CrossRefGoogle Scholar
Lamballais, E., Lesieur, M. & Métais, O. 1996 Effects of spanwise rotation on the vorticity stretching in transitional and turbulent channel flow. Intl J. Heat Fluid Flow 17, 324332.CrossRefGoogle Scholar
Liu, N.S. & Lu, X.Y. 2007 Direct numerical simulation of spanwise rotating turbulent channel flow with heat transfer. Intl J. Numer. Methods Fluids 53, 16891706.CrossRefGoogle Scholar
Marcus, G.G., Parsa, S., Kramel, S., Ni, R. & Voth, G.A. 2014 Measurements of the solid-body rotation of anisotropic particles in 3D turbulence. New J. Phys. 16, 102001.CrossRefGoogle Scholar
Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J. & Boersma, B.J. 2008 a On the orientation of ellipsoidal particles in turbulent shear flow. Intl J. Multiphase Flow 34, 678683.CrossRefGoogle Scholar
Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J. & Boersma, B.J. 2008 b Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302.CrossRefGoogle Scholar
Nakabayashi, K. & Kitoh, O. 1996 Low Reynolds number fully developed two-dimensional turbulent channel flow with system rotation. J. Fluid Mech. 315, 129.CrossRefGoogle Scholar
Nakabayashi, K. & Kitoh, O. 2005 Turbulence characteristics of two-dimensional channel flow with system rotation. J. Fluid Mech. 528, 355377.CrossRefGoogle Scholar
Ni, R., Ouellette, N.T. & Voth, G.A. 2014 Alignment of vorticity and rods with Lagrangian fluid stretching in turbulence. J. Fluid Mech. 743, R3.CrossRefGoogle Scholar
Pan, Y.K., Tanaka, T. & Tsuji, Y. 2001 Direct numerical simulation of particle-laden rotating turbulent channel flow. Phys. Fluids 13, 23202337.CrossRefGoogle Scholar
Pan, Y.K., Tanaka, T. & Tsuji, Y. 2002 Turbulence modulation by dispersed solid particles in rotating channel flows. Intl J. Multiphase Flow 28, 527552.CrossRefGoogle Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G.A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.CrossRefGoogle ScholarPubMed
Pumir, A. & Wilkinson, M. 2011 Orientation statistics of small particles in turbulence. New J. Phys. 13, 093030.CrossRefGoogle Scholar
Qiu, J., Marchioli, C., Andersson, H.I. & Zhao, L. 2019 Settling tracer spheroids in vertical turbulent channel flows. Intl J. Multiphase Flow 118, 173182.CrossRefGoogle Scholar
Shaik, S. & van Hout, R. 2023 Kinematics of rigid fibers in a turbulent channel flow. Intl J. Multiphase Flow 158, 104262.CrossRefGoogle Scholar
Tafti, D.K. & Vanka, S.P. 1991 A numerical study of the effects of spanwise rotation on turbulent channel flow. Phys. Fluids A 3, 642656.CrossRefGoogle Scholar
Takao, M. & Setoguchi, T. 2012 Air turbines for wave energy conversion. Intl J. Rotating Mach. 2012, 110.CrossRefGoogle Scholar
Visscher, J., Andersson, H.I., Barri, M., Didelle, H., Viboud, S., Sous, D. & Sommeria, J. 2011 A new set-up for PIV measurements in rotating turbulent duct flows. Flow Meas. Instrum. 22, 7180.CrossRefGoogle Scholar
Voth, G.A. 2015 Disks aligned in a turbulent channel. J. Fluid Mech. 772, 14.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.CrossRefGoogle Scholar
Xia, Y., Yu, Z. & Guo, Y. 2020 Interface-resolved numerical simulations of particle-laden turbulent channel flows with spanwise rotation. Phys. Fluids 32, 013303.CrossRefGoogle Scholar
Xia, Z., Shi, Y. & Chen, S. 2016 Direct numerical simulation of turbulent channel flow with spanwise rotation. J. Fluid Mech. 788, 4256.CrossRefGoogle Scholar
Xu, C. & Amano, R.S. 2012 Empirical design considerations for industrial centrifugal compressors. Intl J. Rotating Mach. 2012, 115.Google Scholar
Yang, K., Zhao, L. & Andersson, H.I. 2018 Mean shear versus orientation isotropy: effects on inertialess spheroids’ rotation mode in wall turbulence. J. Fluid Mech. 844, 796816.CrossRefGoogle Scholar
Yang, Y.-T. & Wu, J.-Z. 2012 Channel turbulence with spanwise rotation studied using helical wave decomposition. J. Fluid Mech. 692, 137152.CrossRefGoogle Scholar
Yuan, W., Andersson, H.I., Zhao, L., Challabotla, N.R. & Deng, J. 2017 Dynamics of disk-like particles in turbulent vertical channel flow. Intl J. Multiphase Flow 96, 86100.CrossRefGoogle Scholar
Zhang, H., Ahmadi, G., Fan, F.-G. & McLaughlin, J.B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl J. Multiphase Flow 27, 9711009.CrossRefGoogle Scholar
Zhao, L. & Andersson, H.I. 2016 Why spheroids orient preferentially in near-wall turbulence. J. Fluid Mech. 807, 221234.CrossRefGoogle Scholar
Zhao, L., Challabotla, N.R., Andersson, H.I. & Variano, E.A. 2015 Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115, 244501.CrossRefGoogle ScholarPubMed
Zhao, L., Challabotla, N.R., Andersson, H.I. & Variano, E.A. 2019 Mapping spheroid rotation modes in turbulent channel flow: effects of shear, turbulence and particle inertia. J. Fluid Mech. 876, 1954.CrossRefGoogle Scholar
Zhao, L.H., Andersson, H.I. & Gillissen, J.J.J. 2010 Turbulence modulation and drag reduction by spherical particles. Phys. Fluids 22, 081702.CrossRefGoogle Scholar