Hostname: page-component-669899f699-g7b4s Total loading time: 0 Render date: 2025-04-28T14:59:37.896Z Has data issue: false hasContentIssue false

Optimal Strouhal numbers for oscillatory propulsion in density stratified fluids

Published online by Cambridge University Press:  25 April 2025

Jiadong Wang
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, PR China
Prabal Kandel
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, PR China
Jian Deng*
Affiliation:
State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, PR China
*
Corresponding author: Jian Deng, [email protected]

Abstract

The propulsive efficiency of flying and swimming animals propelled by oscillatory appendages typically peaks within a narrow Strouhal number range of $0.20 \lt St \lt 0.40$. Motivated by the ubiquitous presence of stratification in natural environments, we numerically investigate the optimal Strouhal numbers $S{t_m}$ for an oscillating foil in density stratified fluids. Our results reveal that $S{t_m}$ increases with the strength of stratification characterised by the internal Froude number $Fr$, giving rise to markedly higher values under strong stratifications compared with those observed in homogeneous fluids. The propulsive efficiency tends to maximise when there is a resonance between the oscillations of the foil and the fluid, as inferred from a fitted line in the ($St$, $Fr$) parameter space, which shows that $S{t_m}$ is proportional to $Fr^{-1}$. We further uncover that the significant increase in $S{t_m}$ in strongly stratified regimes is fundamentally driven by fluid entrainment. During this process, the oscillating foil induces perturbations in the density field, resulting in buoyancy-driven restoring forces which alter the pressure distribution on the foil and thus the hydrodynamic forces. Notably, only under strongly stratified conditions, where dominant buoyancy effects confine the density transport to the vicinity of the oscillating foil, the intensified density perturbation due to the increase in $St$ can be effectively harnessed to enhance thrust production, thereby contributing to the elevated $S{t_m}$. These insights suggest that oscillatory propulsors should adopt new kinematic strategies involving relatively large Strouhal numbers to achieve efficient cruising in strongly stratified environments.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akiyama, S., Waki, Y., Okino, S. & Hanazaki, H. 2019 Unstable jets generated by a sphere descending in a very strongly stratified fluid. J. Fluid Mech. 867, 2644.CrossRefGoogle Scholar
Alben, S. 2008 Optimal flexibility of a flapping appendage in an inviscid fluid. J. Fluid Mech. 614, 355380.CrossRefGoogle Scholar
Alben, S. 2021 Collective locomotion of two-dimensional lattices of flapping plates. Part 2. Lattice flows and propulsive efficiency. J. Fluid Mech. 915, A21.CrossRefGoogle Scholar
Allshouse, M.R., Lee, F.M., Morrison, P.J. & Swinney, H.L. 2016 Internal wave pressure, velocity, and energy flux from density perturbations. Phys. Rev. Fluids 1 (1), 014301.CrossRefGoogle Scholar
Andersen, A., Bohr, T., Schnipper, T. & Walther, J.H. 2017 Wake structure and thrust generation of a flapping foil in two-dimensional flow. J. Fluid Mech. 812, R4.CrossRefGoogle Scholar
Anderson, J.M., Streitlien, K., Barrett, D.S. & Triantafyllou, M.S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
Ardekani, A.M. & Stocker, R. 2010 Stratlets: low Reynolds number point-force solutions in a stratified fluid. Phys. Rev. Lett. 105 (8), 084502.CrossRefGoogle Scholar
Ardekani, A.M., Doostmohammadi, A. & Desai, N. 2017 Transport of particles, drops, and small organisms in density stratified fluids. Phys. Rev. Fluids 2 (10), 100503.CrossRefGoogle Scholar
Arntsen, Ø.A. 1996 Disturbances, lift and drag forces due to the translation of a horizontal circular cylinder in stratified water. Exp. Fluids 21 (5), 387400.CrossRefGoogle Scholar
Buchholz, J.H.J. & Smits, A.J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.CrossRefGoogle ScholarPubMed
Chongsiripinyo, K., Pal, A. & Sarkar, S. 2017 On the vortex dynamics of flow past a sphere at Re = 3700 in a uniformly stratified fluid. Phys. Fluids 29 (2), 020704.CrossRefGoogle Scholar
Christin, S., Meunier, P. & Le Dizès, S. 2021 Fluid–structure interactions of a circular cylinder in a stratified fluid. J. Fluid Mech. 915, A97.CrossRefGoogle Scholar
Deng, J. & Caulfield, C.P. 2016 Dependence on aspect ratio of symmetry breaking for oscillating foils: implications for flapping flight. J. Fluid Mech. 787, 1649.CrossRefGoogle Scholar
Deng, J. & Caulfield, C.P. 2018 Horizontal locomotion of a vertically flapping oblate spheroid. J. Fluid Mech. 840, 688708.CrossRefGoogle Scholar
Deng, J. & Kandel, P. 2022 Drag force on a circular cylinder in stratified flow: a two-dimensional numerical study. Phys. Fluids 34 (5), 056601.CrossRefGoogle Scholar
Deng, J., Sun, L., Teng, L., Pan, D. & Shao, X. 2016 The correlation between wake transition and propulsive efficiency of a flapping foil: a numerical study. Phys. Fluids 28 (9), 094101.CrossRefGoogle Scholar
Dewey, P.A., Carriou, A. & Smits, A.J. 2012 On the relationship between efficiency and wake structure of a batoid-inspired oscillating fin. J. Fluid Mech. 691, 245266.CrossRefGoogle Scholar
Dong, H., Mittal, R. & Najjar, FM 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
Doostmohammadi, A., Dabiri, S. & Ardekani, A M. 2014 A numerical study of the dynamics of a particle settling at moderate Reynolds numbers in a linearly stratified fluid. J. Fluid Mech. 750, 532.CrossRefGoogle Scholar
Eloy, C. 2012 Optimal Strouhal number for swimming animals. J. Fluid. Struct. 30, 205218.CrossRefGoogle Scholar
Ermanyuk, E.V. & Gavrilov, N.V. 2002 Force on a body in a continuously stratified fluid. Part 1. Circular cylinder. J. Fluid Mech. 451, 421443.CrossRefGoogle Scholar
Ermanyuk, E.V. & Gavrilov, N.V. 2003 Force on a body in a continuously stratified fluid. Part 2. Sphere. J. Fluid Mech. 494, 3350.CrossRefGoogle Scholar
Fish, F.E. & Lauder, G.V. 2006 Passive and active flow control by swimming fishes and mammals. Annu. Rev. Fluid Mech. 38 (1), 193224.CrossRefGoogle Scholar
Floryan, D., Van Buren, T., Rowley, C.W. & Smits, A.J. 2017 Scaling the propulsive performance of heaving and pitching foils. J. Fluid Mech. 822, 386397.CrossRefGoogle Scholar
Flynn, M.R., Onu, K. & Sutherland, B.R. 2003 Internal wave excitation by a vertically oscillating sphere. J. Fluid Mech. 494, 6593.CrossRefGoogle Scholar
Gazzola, M., Argentina, M. & Mahadevan, L. 2014 Scaling macroscopic aquatic locomotion. Nat. Phys. 10 (10), 758761.CrossRefGoogle Scholar
Godoy-Diana, R., Aider, J.-L. & Wesfreid, J.E. 2008 Transitions in the wake of a flapping foil. Phys. Rev. E—Stat. Nonlinear Soft Matt. Phys. 77 (1), 016308.CrossRefGoogle ScholarPubMed
Guglielmini, L. & Blondeaux, P. 2004 Propulsive efficiency of oscillating foils. Eur. J. Mech.- B/Fluids 23 (2), 255278.CrossRefGoogle Scholar
Hanazaki, H., Nakamura, S. & Yoshikawa, H. 2015 Numerical simulation of jets generated by a sphere moving vertically in a stratified fluid. J. Fluid Mech. 765, 424451.CrossRefGoogle Scholar
Houghton, I.A., Koseff, J.R., Monismith, S.G. & Dabiri, J.O. 2018 Vertically migrating swimmers generate aggregation-scale eddies in a stratified column. Nature 556 (7702), 497500.CrossRefGoogle Scholar
Howland, C.J., Taylor, J.R. & Caulfield, C.P. 2021 Shear-induced breaking of internal gravity waves. J. Fluid Mech. 921, A24.CrossRefGoogle Scholar
Hurley, D.G. & Keady, G. 1997 The generation of internal waves by vibrating elliptic cylinders. Part 2. Approximate viscous solution. J. Fluid Mech. 351, 119138.CrossRefGoogle Scholar
Isogai, K., Shinmoto, Y. & Watanabe, Y. 1999 Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil. AIAA J. 37 (10), 11451151.CrossRefGoogle Scholar
Izraelevitz, J.S. & Triantafyllou, M.S. 2014 Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils. J. Fluid Mech. 742, 534.CrossRefGoogle Scholar
Kandel, P. & Deng, J. 2022 Swimming in density-stratified fluid: study on a flapping foil. Bioinspir. Biomim. 17 (5), 055003.CrossRefGoogle Scholar
Lam, T., Vincent, L. & Kanso, E. 2019 Passive flight in density-stratified fluids. J. Fluid Mech. 860, 200223.CrossRefGoogle Scholar
Liao, J.C., Beal, D.N., Lauder, G.V. & Triantafyllou, M.S. 2003 Fish exploiting vortices decrease muscle activity. Science 302 (5650), 15661569.CrossRefGoogle ScholarPubMed
Lighthill, M.J. 1967 On waves generated in dispersive systems by travelling forcing effects, with applications to the dynamics of rotating fluids. J. Fluid Mech. 27 (4), 725752.CrossRefGoogle Scholar
Lofquist, K.E.B. & Purtell, L.P. 1984 Drag on a sphere moving horizontally through a stratified liquid. J. Fluid Mech. 148, 271284.CrossRefGoogle Scholar
Lua, K.B., Dash, S.M., Lim, T.T. & Yeo, K.S. 2016 On the thrust performance of a flapping two-dimensional elliptic airfoil in a forward flight. J. Fluid. Struct. 66, 91109.CrossRefGoogle Scholar
Madison, T.J., Xiang, X. & Spedding, G.R. 2022 Laboratory and numerical experiments on the near wake of a sphere in a stably stratified ambient. J. Fluid Mech. 933, A12.CrossRefGoogle Scholar
Magnaudet, J. & Mercier, M.J. 2020 Particles, drops, and bubbles moving across sharp interfaces and stratified layers. Annu. Rev. Fluid Mech. 52 (1), 6191.CrossRefGoogle Scholar
Meunier, P. & Spedding, G.R. 2006 Stratified propelled wakes. J. Fluid Mech. 552, 229256.CrossRefGoogle Scholar
More, R.V. & Ardekani, A.M. 2020 Motion of an inertial squirmer in a density stratified fluid. J. Fluid Mech. 905, A9.CrossRefGoogle Scholar
More, R.V. & Ardekani, A.M. 2023 Motion in stratified fluids. Annu. Rev. Fluid Mech. 55 (1), 157192.CrossRefGoogle Scholar
More, R.V., Ardekani, M.N., Brandt, L. & Ardekani, A.M. 2021 Orientation instability of settling spheroids in a linearly density-stratified fluid. J. Fluid Mech. 929, A7.CrossRefGoogle Scholar
Muscutt, L.E., Weymouth, G.D. & Ganapathisubramani, B. 2017 Performance augmentation mechanism of in-line tandem flapping foils. J. Fluid Mech. 827, 484505.CrossRefGoogle Scholar
Nudds, R.L., John, E.L., Keen, A.N. & Shiels, H.A. 2014 Rainbow trout provide the first experimental evidence for adherence to a distinct Strouhal number during animal oscillatory propulsion. J. Expl Biol. 217 (13), 22442249.CrossRefGoogle ScholarPubMed
Okino, S., Akiyama, S. & Hanazaki, H. 2017 Velocity distribution around a sphere descending in a linearly stratified fluid. J. Fluid Mech. 826, 759780.CrossRefGoogle Scholar
Ortiz-Tarin, J.L., Nidhan, S. & Sarkar, S. 2023 The high-Reynolds-number stratified wake of a slender body and its comparison with a bluff-body wake. J. Fluid Mech. 957, A7.CrossRefGoogle Scholar
Platzer, M.F., Jones, K.D., Young, J. & Lai, J.C.S. 2008 Flapping wing aerodynamics: progress and challenges. AIAA J. 46 (9), 21362149.CrossRefGoogle Scholar
Quinn, D.B., Moored, K.W., Dewey, P.A. & Smits, A.J. 2014 Unsteady propulsion near a solid boundary. J. Fluid Mech. 742, 152170.CrossRefGoogle Scholar
Read, D.A., Hover, F.S. & Triantafyllou, M.S. 2003 Forces on oscillating foils for propulsion and maneuvering. J. Fluid. Struct. 17 (1), 163183.CrossRefGoogle Scholar
Rehm, R.G. & Radt, H.S. 1975 Internal waves generated by a translating oscillating body. J. Fluid Mech. 68 (2), 235258.CrossRefGoogle Scholar
Riley, J.J. & Lelong, M.-P. 2000 Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech. 32 (1), 613657.CrossRefGoogle Scholar
Rohr, J.J. & Fish, F.E. 2004 Strouhal numbers and optimization of swimming by odontocete cetaceans. J. Expl Biol. 207 (10), 16331642.CrossRefGoogle ScholarPubMed
Rozhdestvensky, K. 2022 Study of underwater and wave gliders on the basis of simplified mathematical models. Appl. Sci. 12 (7), 3465.CrossRefGoogle Scholar
Rozhdestvensky, K.V. & Ryzhov, V.A. 2003 Aerohydrodynamics of flapping-wing propulsors. Prog. Aerosp. Sci. 39 (8), 585633.CrossRefGoogle Scholar
Sarpkaya, T. 1983 Trailing vortices in homogeneous and density-stratified media. J. Fluid Mech. 136, 85109.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2016 Boundary-Layer Theory. Springer.Google Scholar
Schnipper, T., Andersen, A. & Bohr, T. 2009 Vortex wakes of a flapping foil. J. Fluid Mech. 633, 411423.CrossRefGoogle Scholar
Şentürk, U. & Smits, A.J. 2019 Reynolds number scaling of the propulsive performance of a pitching hydrofoil. AIAA J. 57 (7), 26632669.CrossRefGoogle Scholar
Smits, A.J. 2019 Undulatory and oscillatory swimming. J. Fluid Mech. 874, P1.CrossRefGoogle Scholar
Spalart, P.R. 1996 On the motion of laminar wing wakes in a stratified fluid. J. Fluid Mech. 327, 139160.CrossRefGoogle Scholar
Spedding, G.R., Browand, F.K. & Fincham, A.M. 1996 Turbulence, similarity scaling and vortex geometry in the wake of a towed sphere in a stably stratified fluid. J. Fluid Mech. 314, 53103.CrossRefGoogle Scholar
Spedding, G.R. 2014 Wake signature detection. Annu. Rev. Fluid Mech. 46 (1), 273302.CrossRefGoogle Scholar
Staquet, C. & Sommeria, J. 2002 Internal gravity waves: from instabilities to turbulence. Annu. Rev. Fluid Mech. 34 (1), 559593.CrossRefGoogle Scholar
Stevenson, T.N. & Thomas, N.H. 1969 Two-dimensional internal waves generated by a travelling oscillating cylinder. J. Fluid Mech. 36 (3), 505511.CrossRefGoogle Scholar
Sutherland, B.R. 2010 Internal Gravity Waves. Cambridge University Press.CrossRefGoogle Scholar
Taylor, G.K. 2018 Simple scaling law predicts peak efficiency in oscillatory propulsion. Proc. Natl Acad. Sc. USA 115 (32), 80638065.CrossRefGoogle ScholarPubMed
Taylor, G.K., Nudds, R.L. & Thomas, A.L.R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425 (6959), 707711.CrossRefGoogle Scholar
Techet, A.H. 2008 Propulsive performance of biologically inspired flapping foils at high Reynolds numbers. J. Expl Biol. 211 (2), 274279.CrossRefGoogle ScholarPubMed
Thorpe, S.A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Tkacheva, L.A. 1995 Unsteady motion of a thin wing in a stratified fluid. J. Appl. Mech. Tech. Phys. 36 (6), 828839.CrossRefGoogle Scholar
Tkacheva, L.A. 1998 Hydrodynamic characteristics of a wing in a stratified fluid near the bottom. J. Appl. Mech. Tech. Phys. 39 (1), 2429.CrossRefGoogle Scholar
Torres, C.R., Hanzaki, H., Ochoa, J., Castillo, J. & Van Woert, M. 2000 Flow past a sphere moving vertically in a stratified diffusive fluid. J. Fluid Mech 417, 211236.CrossRefGoogle Scholar
Triantafyllou, G.S., Triantafyllou, M.S. & Grosenbaugh, M.A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluid. Struct. 7 (2), 205224.CrossRefGoogle Scholar
Triantafyllou, M.S. et al. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A: Fluid Dyn. 3 (12), 28352837.CrossRefGoogle Scholar
Triantafyllou, M.S., Triantafyllou, G.S. & Yue, D.K.P. 2000 Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech. 32 (1), 3353.CrossRefGoogle Scholar
Tuncer, I.H. & Kaya, M. 2005 Optimization of flapping airfoils for maximum thrust and propulsive efficiency. AIAA J. 43 (11), 23292336.CrossRefGoogle Scholar
Van Buren, T., Floryan, D. & Smits, A.J. 2019 Scaling and performance of simultaneously heaving and pitching foils. AIAA J. 57 (9), 36663677.CrossRefGoogle Scholar
Verma, S. & Hemmati, A. 2022 Characterization of bifurcated dual vortex streets in the wake of an oscillating foil. J. Fluid Mech. 945, A7.CrossRefGoogle Scholar
Voisin, B. 1994 Internal wave generation in uniformly stratified fluids. Part 2. Moving point sources. J. Fluid Mech. 261, 333374.CrossRefGoogle Scholar
Wang, J., Deng, J., Kandel, P. & Sun, L. 2023 Numerical study on the energy extraction performance by flapping foils in a density stratified flow. J. Fluid. Struct. 118, 103865.CrossRefGoogle Scholar
Wang, J., Kandel, P. & Deng, J. 2024 High propulsive performance by an oscillating foil in a stratified fluid. J. Fluid Mech. 980, A55.CrossRefGoogle Scholar
Wang, S., Wang, J. & Deng, J. 2023 Effect of layer thickness for the bounce of a particle settling through a density transition layer. Phys. Rev. E 108 (6), 065108.CrossRefGoogle ScholarPubMed
Wang, Z.J. 2000 Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410, 323341.CrossRefGoogle Scholar
Williamson, C.H.K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluid. Struct. 2 (4), 355381.CrossRefGoogle Scholar
Wu, T.Y. 2011 Fish swimming and bird/insect flight. Annu. Rev. Fluid Mech. 43 (1), 2558.CrossRefGoogle Scholar
Yick, K.Y., Torres, C.R., Peacock, T. & Stocker, R. 2009 Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers. J. Fluid Mech. 632, 4968.CrossRefGoogle Scholar
Young, J. & Lai, J.C.S. 2007 Mechanisms influencing the efficiency of oscillating airfoil propulsion. AIAA J. 45 (7), 16951702.CrossRefGoogle Scholar
Zhang, J. 2017 Footprints of a flapping wing. J. Fluid Mech. 818, 14.CrossRefGoogle Scholar
Zhang, J., Mercier, M.J. & Magnaudet, J. 2019 Core mechanisms of drag enhancement on bodies settling in a stratified fluid. J. Fluid Mech. 875, 622656.CrossRefGoogle Scholar
Zhou, C. & Low, K.H. 2011 Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans. Mech. 17 (1), 2535.CrossRefGoogle Scholar
Zhu, Q. 2007 Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J. 45 (10), 24482457.CrossRefGoogle Scholar