Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T21:05:41.828Z Has data issue: false hasContentIssue false

One-dimensional linear analysis of the compound jet

Published online by Cambridge University Press:  20 April 2006

Angel Sanz
Affiliation:
Laboratorio de Aerodinámica, E.T.S.I. Aeronáuticos, Universidad Politécnica, 28040 Madrid
José Meseguer
Affiliation:
Laboratorio de Aerodinámica, E.T.S.I. Aeronáuticos, Universidad Politécnica, 28040 Madrid

Abstract

The stability of an infinitely long compound liquid column is analysed by using a one-dimensional inviscid slice model. Results obtained from this one-dimensional linear analysis are applicable to the study of compound capillary jets, which are used in the ink-jet printing technique. Stability limits and the breaking regimes of such fluid configurations are established, and, whenever possible, theoretical results are compared with experimental ones.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, H. F. 1982 Coupled oscillations of a solidly rotating liquid bridge. Acta Astronautica 9, 547563.Google Scholar
Bogy, D. B. 1978 Use of one-dimensional Cosserat theory to study instability in a viscous liquid jet. Phys. Fluids 21, 190197.Google Scholar
Bogy, D. B. 1979 Drop formation in a circular liquid jet. Ann. Rev. Fluid Mech. 11, 207228.Google Scholar
Bogy, D. B. 1981 Steady draw-down of a liquid jet under surface tension and gravity. J. Fluid Mech. 105, 157176.Google Scholar
Chaudhary, K. C. & Redekopp, L. C. 1980 The non-linear instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96, 257274.Google Scholar
Entov, V. M. & Yarin, A. L. 1984 The dynamics of thin liquid jets in air. J. Fluid Mech. 140, 91111.Google Scholar
Green, A. E. 1976 On the non-linear behaviour of fluid jets. Intl J. Engng Sci. 14, 4963.Google Scholar
Hermanrud, B. 1981 The compound jet. A new method to generate fluid jets for ink printing. Rep. 1/1981, LUTEDX/(TEEM-1006)/1-143, Lund Inst. Tech., Sweden.
Hermanrud, B. & Hertz, C. H. 1979 Ink jet development at the Lund Institute of Technology. J. Appl. Photogr. Engng 5, 220225.Google Scholar
Hertz, C. H. & Hermanrud, B. 1983 A liquid compound jet. J. Fluid Mech. 131, 271287.Google Scholar
Keller, J. B., Rubinow, S. I. & Tu, Y. O. 1973 Spatial instability of a jet. Phys. Fluids 16, 20522055.Google Scholar
Lee, H. C. 1974 Drop formation in a liquid jet. IBM J. Res. Dev. 18, 364369.Google Scholar
Meseguer, J. 1983 The breaking of axisymmetric liquid bridges. J. Fluid Mech. 130, 123151.Google Scholar
Meseguer, J. & Sanz, A. 1985 Numerical and experimental study of the dynamics of axisymmetric liquid bridges. J. Fluid Mech. 153, 83101.Google Scholar
Pimbley, W. T. & Lee, H. C. 1977 Satellite droplet formation in a liquid jet. IBM J. Res. Dev. 21, 2130.Google Scholar
Sanz, A. 1983 Comportamiento de las zonas liquidas flotantes en microgravedad simulada. Tesis doctoral, Universidad Politécnica de Madrid.
Schlichting, H. 1960 Boundary Layer Theory, chap. XI. McGraw-Hill.
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc. R. Soc. Lond. A 150, 322337.Google Scholar
Weber, C. 1931 Zum Zerfall eines Flüssigkeitsstrahles. Z. angew. Math. Mech. 11, 136141.Google Scholar