Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:55:57.607Z Has data issue: false hasContentIssue false

On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6×103 to 5×106

Published online by Cambridge University Press:  20 April 2006

E. Achenbach
Affiliation:
Kernforschungsanlage Jülich GmbH, Institut für Reaktorbauelemente
E. Heinecke
Affiliation:
Kernforschungsanlage Jülich GmbH, Institut für Reaktorbauelemente

Abstract

The influence of surface roughness on the vortex-shedding frequency in the wake of a single cylinder has been investigated. The experiments were carried out in an atmospherical and a high-pressure wind tunnel. The tests were started with a smooth cylinder. Then the wake flow of cylinders with relative roughnesses of ks/d = 75 × 10−5, 300 × 10−5, 900 × 10−5, and 3000 × 10−5 was investigated.

For all roughness parameters tested the Strouhal number exhibited an increase in the critical flow regime. With growing roughness parameter the step in the curve became smaller. At transcritical flow conditions the Strouhal number was measured to be in the range of Sr = 0·25 ± 0·018 for all surface roughness tested. No regular vortex shedding could be observed in the critical flow range for the smooth cylinder with l/d = 3·38. When prolonging the test body to l/d = 6·75 the wake fluctuations became periodic.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, E. 1971 Influence of surface roughness on the cross-flow around a circular cylinder. J. Fluid Mech. 46, 321335.Google Scholar
Achenbach, E. 1977 The effect of surface roughness on the heat transfer from a circular cylinder to the cross flow of air. Int. J. Heat Mass Transfer 20, 359369.Google Scholar
Allen, H. J. & Vincenti, W. G. 1930 Wall interference in a two-dimensional-flow wind tunnel with consideration of the effect of compressibility. Nat. Adv. Comm. Aero. Wash. Rep. 782.Google Scholar
Bearman, P. W. 1969 On vortex shedding from a circular cylinder in the critical Reynolds number regime. J. Fluid Mech. 34, 577585.Google Scholar
Delany, N. K. & Sorensen, N. E. 1953 Low-speed drag of cylinders of various shapes. N.A.C.A. T.N. 3038.Google Scholar
Drescher, H. 1956 Messung der auf querangeströmte Zylinder ausgeübten zeitlich veränderlichen Drücke. Z. Flugwiss. 4, 1721.Google Scholar
Groehn, H. G. & Scholz, F. 1977 Heat transfer and pressure drop of in-line banks of tubes with artificial roughness. Fifth All-Union Conference, Minsk.
Grosse, H. & Scholz, F. 1965 Der Hochdruck-Gaskanal. Kerntechnik, Heft 4. München: Thiemig.
Heinecke, E. 1971 Strömungstechnische und aeroakustische Erscheinungen in Zylindergittern. Diss. T.U. Berlin (D83); see also Bericht der KFA Jülich GmbH, Jül-815-RB, 1971.
Jones, G. W., Cincotta, J. J. & Walker, R. W. 1969 Aerodynamic forces on a stationary and oscillating circular cylinder at high Reynolds numbers. N.A.S.A. T.R. R-300.
Morsbach, M. 1967 Über die Bedingungen für eine Wirbelstraßenbildung hinter Kreiszylindern. Diss. RWTH Aachen.
Richter, A. 1973 Strömungskräfte auf starre Kreiszylinder zwischen parallelen Wänden. Diss. Universität Karlsruhe.
Richter, A. & Naudascher, E. 1976 Fluctuation forces on a rigid circular cylinder in confined flow. J. Fluid Mech. 78, 561576.Google Scholar
Roshko, A. 1961 Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10, 245356.Google Scholar
Ruscheweyh, H. 1974 Beitrag zur Windbelastung hoher kreiszylinderähnlicher schlanker Bauwerke im natürlichen Wind bei Reynolds-Zahlen bis Re = 14 x 107. Diss. RWTH Aachen.
Szechenyi, E. 1975 Supercritical Reynolds number simulation for two-dimensional flow over circular cylinders. J. Fluid Mech. 77, 529542.Google Scholar
Teverovskii, B. M. 1968 Effect of surface roughness on the vibration of a cylinder in hydrodynamic conditions. Russian Engng J. 48 (12), 5054.Google Scholar