Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T17:19:22.283Z Has data issue: false hasContentIssue false

On the wind-induced growth of slow water waves of finite steepness

Published online by Cambridge University Press:  11 July 2008

WILLIAM L. PEIRSON
Affiliation:
Water Research Laboratory, School of Civil and Environmental Engineering, The University of New South Wales, King Street, Manly Vale, NSW 2093, [email protected]
ANDREW W. GARCIA
Affiliation:
Coastal and Hydraulics Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi, USA

Abstract

Determining characteristic growth rates for water waves travelling more slowly than the wind has continued to be a key unresolved problem of air–sea interaction for over half a century. Analysis of previously reported and recently acquired laboratory wave data shows a systematic decline in normalized wave growth with increasing mean wave steepness that has not previously been identified. The normalized growth dynamic range is comparable with previously observed scatter amongst other laboratory data gathered in the slow wave range. Strong normalized growth rates are observed at low wave steepnesses, implying an efficient wave-coherent tangential stress contribution. Data obtained during this study show quantitative agreement with the predictions of others of the interactions between short wind waves and the longer lower-frequency waves. Measured normalized wave growth rates are consistent with numerically predicted growth due to wave drag augmented by significant wave-coherent tangential stress.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banner, M. L. 1990 The influence of wave breaking on the surface pressure distribution in wind–wave interactions. J. Fluid Mech. 211, 463495.CrossRefGoogle Scholar
Banner, M. L. & Peirson, W. L. 1998 Tangential stress beneath wind-driven air–water interfaces. J. Fluid Mech. 364, 115145.CrossRefGoogle Scholar
Banner, M. L. & Peirson, W. L. 2007 Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585, 93115.CrossRefGoogle Scholar
Banner, M. L. & Phillips, O. M. 1974 On the incipient breaking of small scale waves. J. Fluid Mech. 64, 647656.CrossRefGoogle Scholar
Belcher, S. E. 1999 Wave growth by non-separated sheltering. Eur. J. Mech. B Fluids 18, 447462.CrossRefGoogle Scholar
Belcher, S. E. & Hunt, J. C. R. 1993 Turbulent shear flow over slow waves. J. Fluid Mech. 251, 109148.CrossRefGoogle Scholar
Belcher, S. E. & Hunt, J. C. R. 1998 Turbulent flow over hills and waves. Annu. Rev. Fluid. Mech. 30, 507538.CrossRefGoogle Scholar
Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417430.CrossRefGoogle Scholar
Bliven, L. F., Hwang, N. E. & Long, S. R. 1986 Experimental study of the influence of wind on Benjamin–Feir sideband instability. J. Fluid Mech. 162, 237260.CrossRefGoogle Scholar
Bole, J. B. 1967 Response of gravity water waves to wind excitation. PhD thesis, Dept of Civil Engineering, Stanford University.Google Scholar
Bole, J. B. & Hsu, E. Y. 1969 Response of gravity water waves to wind excitation. J. Fluid Mech. 35, 657675.CrossRefGoogle Scholar
Chen, G. & Belcher, S. E. 2000 Effects of long waves on wind-generated waves. J. Phys. Oceanogr. 30, 22462256.2.0.CO;2>CrossRefGoogle Scholar
Donelan, M. A. 1990 Air–sea interaction. In The Sea: Ocean Engineering Science, vol. 9, pp. 239292. Wiley.Google Scholar
Donelan, M. A. 1999 Wind-induced growth and attenuation of laboratory waves. In Wind-over-Wave Couplings: Perspectives and Prospects (ed. Sajjadi et al.), pp. 183–194. Clarendon.CrossRefGoogle Scholar
Donelan, M. A. & Pierson, W. J. 1987 Radar Scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, C5, 49715029.Google Scholar
Donelan, M. A., Babanin, A. V., Young, I. R. & Banner, M. L. 2006 Wave-follower field measurements of the wind-input spectral function. Part II: Parameterisation of wind input. J. Phys. Oceanogr. 36, 16721689.CrossRefGoogle Scholar
van Duin, C. 1996 Rapid-distortion turbulence models in the theory of surface-wave generation. J. Fluid Mech. 329, 147153.CrossRefGoogle Scholar
Duncan, J. H. 1983 The breaking and non-breaking resistance of a two-dimensional hydrofoil. J. Fluid Mech. 126, 507520.CrossRefGoogle Scholar
Garrett, C. & Smith, J. 1976 On the interaction between long and short surface waves. J. Phys. Oceanogr. 6, 925930.2.0.CO;2>CrossRefGoogle Scholar
van Gastel, K., Janssen, P. A. E. M. & Komen, G. J. 1985 On phase velocity and growth rate of wind-induced gravity-capillary waves. J. Fluid Mech. 161, 199216.CrossRefGoogle Scholar
Hasselmann, D. & Bösenberg, J. 1991 Field measurements of wave-induced pressure over wind-sea and swell. J. Fluid Mech. 230, 391428.CrossRefGoogle Scholar
Hasselmann, K. 1971 On the mass and momentum transfer between short gravity waves and larger-scale motions. J. Fluid Mech. 50, 189205.CrossRefGoogle Scholar
Holthuijsen, L. H. & Herbers, T. H. C. 1986 Statistics of wave breaking observed as whitecaps on the open sea. J. Phys. Oceanogr. 16, 290297.2.0.CO;2>CrossRefGoogle Scholar
Jähne, B. & Haußecker, H. 1998 Air-water gas exchange. Annu. Rev. Fluid Mech. 30, 444468.CrossRefGoogle Scholar
Janssen, P. 2004 The Interaction of Ocean Waves and Wind. Cambridge University Press.CrossRefGoogle Scholar
Jeffreys, H. 1925 On the formation of water waves by wind. Proc. R. Soc. Lond. 107, 189206.Google Scholar
Jessup, A. T. & Phadnis, K. R. 2005 Measurement of the geometric and kinematic properties of microscale breaking waves from infrared imagery using a PIV algorithm. Meas. Sci. Techol. 16, 19611969.CrossRefGoogle Scholar
Katsaros, K. B. & Atatürk, S. S. 1992 Dependence of wave-breaking statistics on wind stress and wave development. In Breaking Waves (ed. Banner, M. L. & Grimshaw, R. H. J.). Springer.Google Scholar
Kinsman, B. 1984 Wind Waves. Dover.Google Scholar
Komen, G. J., Cavaleri, M., Donelan, M., Hasselmann, K., Hasselmann, S. & Janssen, P. A. E. M. 1994 Dynamics and Modelling of Ocean Waves. Cambridge University Press.CrossRefGoogle Scholar
Larson, T. R. & Wright, J. W. 1975 Wind-generated gravity–capillary waves: laboratory measurements of temporal growth rates using microwave backscatter. J. Fluid Mech. 70, 417436.CrossRefGoogle Scholar
Li, P. Y., Xu, D., & Taylor, P. A. 2000, Numerical modelling of turbulent airflow over water waves. Boundary-Layer Met.. 95, 397425.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1960 Mass-transport in the boundary-layer at a free oscillating surface. J. Fluid Mech. 8, 293306.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1969 A non-linear mechanism for the generation of sea waves. Proc. R. Soc. Lond. A 311, 371389.Google Scholar
Longuet-Higgins, M. S. 1992 Capillary rollers and bores. J. Fluid Mech. 240, 659679.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1995 Parasitic capillary waves: a direct calculation. J. Fluid Mech. 301, 79107.CrossRefGoogle Scholar
Longuet-Higgins, M. S. & Stewart, R. W. 1960 Changes in the form of short gravity waves on long waves and tidal currents. J. Fluid Mech. 8, 565583.CrossRefGoogle Scholar
Makin, V. K. & Kudryavtsev, V. N. 2002 Impact of dominant waves on sea drag. Boundary-Layer Met. 103, 8399.CrossRefGoogle Scholar
Makin, V. K., Branger, H., Peirson, W. L. & Giovanangeli, J. P. 2007 Modelling of laboratory measurements of stress in the air flow over wind-generated and paddle waves. J. Phys. Oceanog. 37, 28242837.CrossRefGoogle Scholar
Mastenbroek, C. 1996 Wind wave interaction. PhD thesis, Delft Technical University.Google Scholar
Mastenbroek, C., Makin, V. K., Garat, M. H. & Giovanangeli, J. P. 1996 Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J. Fluid Mech. 318, 273302.CrossRefGoogle Scholar
Meirink, J. F. & Makin, V. K. 2000 Modelling low-Reynolds-number effects in the turbulent air flow over water waves. J. Fluid Mech. 415, 155174.CrossRefGoogle Scholar
Melville, W. K. & Matusov, P. 2002 Distribution of breaking waves at the ocean surface. Nature 417, 58.CrossRefGoogle ScholarPubMed
Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.CrossRefGoogle Scholar
Miles, J. W. 1962 On the generation of surface waves by shear flows. Part 4. J. Fluid Mech. 13, 443448.CrossRefGoogle Scholar
Miles, J. W. 1993 Surface-wave generation revisited. J. Fluid Mech. 256, 427441.CrossRefGoogle Scholar
Miles, J. W. 1996 Surface-wave generation: a viscoelastic model. J. Fluid Mech. 322, 131145.CrossRefGoogle Scholar
Miller, S. J., Shemdin, O. H., Longuet-Higgins, M. S. 1991 Laboratory measurements of modulation of short wave slopes by long surface waves. J. Fluid. Mech. 233, 389404.CrossRefGoogle Scholar
Mitsuyasu, H. 1966 Interactions between water waves and wind (I). Rep. Res. Inst. Appl. Mech., Kyushu University, 14, 6788.Google Scholar
Mitsuyasu, H. & Honda, T. 1982 Wind-induced growth of water waves. J. Fluid Mech. 123, 425442.CrossRefGoogle Scholar
Okuda, K., Kawai, S. & Toba, Y. 1977 Measurement of skin friction distribution along the surface of wind waves. J. Oceanogr. Soc. Japan 30, 190198.CrossRefGoogle Scholar
Peirson, W. L. 1997 Measurement of surface velocities and shears at a wavy air–water interface using particle image velocimetry. Exps. Fluids 23, 427437.CrossRefGoogle Scholar
Peirson, W. L. & Banner, M. L. 2003 Aqueous surface layer flows induced by microscale breaking wind waves. J. Fluid Mech. 479, 138.CrossRefGoogle Scholar
Peirson, W. L. & Belcher, S. E. 2005 Growth response of waves to the wind stress. Proc. Intl Conf. Coastal Engng. ASCE.CrossRefGoogle Scholar
Peirson, W. L., Garcia, A. W. & Pells, S. E. 2003 Water–wave attenuation due to opposing wind. J. Fluid Mech. 487, 345365.CrossRefGoogle Scholar
Peirson, W. L., Branger, H., Giovanangeli, J. P. & Banner, M. L. 2004 The response of wind drag to underlying swell slope. WRL Res. Rep. 223, University of New South Wales, Water Research Laboratory, Manly Vale NSW, Australia. ISBN 0 85 824 030 2.Google Scholar
Phillips, O. M. 1963 On the attenuation of long gravity waves by short breaking waves. J. Fluid Mech. 16, 321332.CrossRefGoogle Scholar
Phillips, O. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Phillips, O. M. 1985 Spectral and statistical properties of the equilibrium range in the wind-generated gravity waves. J. Fluid Mech. 156, 505531.CrossRefGoogle Scholar
Phillips, O. M. & Banner, M. L. 1974 Wave breaking in the presence of wind drift and swell. J. Fluid Mech. 66, 625640.CrossRefGoogle Scholar
Plant, W. J. 1982 A relationship between wind stress and wave slope. J. Geophys. Res. 87, C3, 19611967.CrossRefGoogle Scholar
Plant, W. J. & Wright, J. W. 1977 Growth and equilibrium of short gravity waves in a wind-wave tank. J. Fluid Mech. 82, 767793.CrossRefGoogle Scholar
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep water breaking waves. Phil. Trans. R. Soc. Lond. A 331, 735800.Google Scholar
Robinson, I. & Guymer, T. 1996 Observing oceans from space. In Oceanography: An Illustrated Text. (ed. Summerhayes, C. P. & Thorpe, S. A.) Chap. 3. John Wiley.Google Scholar
Reul, N., Branger, H. & Giovanangeli, J-P. 2007 Air flow structure over short-gravity breaking water waves. Boundary-Layer Met. doi 10.1007/s10546-007-9240-3.CrossRefGoogle Scholar
Shemdin, O. H. & Hsu, E. Y. 1967 Direct Measurements of aerodynamic pressure above a simple progressive gravity wave. J. Fluid Mech. 30, 403416.CrossRefGoogle Scholar
Shyu, J.-H. & Phillips, O. M. 1990 The blockage of gravity and capillary waves by longer waves and currents. J. Fluid Mech. 217, 115141.CrossRefGoogle Scholar
Snyder, R. L., Dobson, F. W., Elliott, J. A. & Long, R. B. 1981 Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 159.CrossRefGoogle Scholar
Teixeira, M. A. & Belcher, S. E. 2002 On the distortion of turbulence by a progressive surface wave. J. Fluid Mech. 458, 229267.CrossRefGoogle Scholar
Townsend, A. A. 1972 Flow in a deep turbulent boundary layer over a surface distorted by water waves. J. Fluid Mech. 55, 719735.CrossRefGoogle Scholar
Van Dorn, W. G. 1966 Boundary dissipation of oscillatory waves. J. Fluid Mech. 24, 769779.CrossRefGoogle Scholar
Wilson, W. S., Banner, M. L., Flower, R. J., Michael, J. A. & Wilson, D. G. 1973 Wind-induced growth of mechanically generated water waves. J. Fluid Mech. 58, 435460.CrossRefGoogle Scholar
Wright, J. W. 1976 The wind drift and wave breaking. J. Phys. Oceanog. 6, 402405.2.0.CO;2>CrossRefGoogle Scholar
Wu, H.-Y., Hsu, E.-Y. & Street, R. L. 1979 Experimental study of non-linear wave-wave interaction and white-cap dissipation of wind-generated waves. Dyn. Atmos. Oceans 3, 5578.CrossRefGoogle Scholar
Wu, H.-Y., Hsu, E.-Y. & Street, R. L. 1977 The energy transfer due to air-input, non-linear wave-wave interactions and white-cap dissipation associated with wind-generated waves. Dept Civ. Engng Tech. Rep. 207, Stanford University, CA.Google Scholar