Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T15:16:03.431Z Has data issue: false hasContentIssue false

On the topology of vortex lines and tubes

Published online by Cambridge University Press:  25 July 2007

O. U. VELASCO FUENTES*
Affiliation:
Departamento de Oceanografía Física, CICESE, Ensenada, Baja California, México

Abstract

This paper examines the widespread idea that vortex lines and tubes must either close on themselves or extend to the boundary of the fluid. A survey of the origins of this misconception, and of earlier attempts to set it right, is followed by an analysis of simple flows exhibiting vortex lines and tubes which do not fit those shapes. Two types of vortex lines are discussed: dense, which comprise open lines of infinite length but confined in a finite region, and separatrix, which comprise lines that begin or finish within the fluid, at points where the vorticity is null. The presence of these vortex lines in a vortex tube affects its topology in the following ways. Vortex tubes formed by dense vortex lines have infinite length; they self-intersect an infinite number of times but do not close on themselves. Vortex tubes formed by separatrix vortex lines (and either closed or open vortex lines) are torn apart at the points where the vorticity is null. Vortex tubes exclusively composed of separatrix vortex lines begin or finish at points or surfaces within the fluid; in this particular situation the vortex tube has zero strength.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, V. I. 1973 Ordinary Differential Equations. The MIT Press.Google Scholar
Bajer, K. & Moffatt, H. K. 1999 On a class of steady confined Stokes flows whith chaotic streamlines. J. Fluid Mech. 212, 337363.CrossRefGoogle Scholar
Barranco, J. A. & Marcus, P. S. 2005 Three-dimensional vortices in stratified protoplanetary disks. Astrophys. J. 623, 11571170.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press, see p. 75 (on stream-tubes) and p. 93 (on vortex tubes).Google Scholar
Chadwick, E. 2005 A slender-wing theory in potential flow. Proc. R. Soc. Lond. A 461, 415432.Google Scholar
Chorin, A. J. & Marsden, J. E. 1993 A Mathematical Introduction to Fluid Mechanics. Springer, see p. 27.CrossRefGoogle Scholar
Cingoski, V., Kuribayashi, T., Kaneda, K. & Yamashita, H. 1996 Improved interactive visualization of magnetic flux lines in 3-D space using edge finite elements. IEEE Trans. Magnetics 32, 14771480.CrossRefGoogle Scholar
Cottet, G. H. & Koumoutsakos, P. D. 2004 Vortex Methods: Theory and Practice, 2nd edn. Cambridge University Press, see p. 8.Google Scholar
Darrigol, O. 2005 Worlds of Flow: A history of hydrodynamics from the Bernoullis to Prandtl. Oxford University Press.Google Scholar
Dickinson, M. 2003 How to walk on water. Nature 424, 621622.CrossRefGoogle ScholarPubMed
Epple, M. 1998 Topology, matter, and space, I: Topological notions in 19-th century natural philosophy. Arch. History Exact Sci. 52, 297392.Google Scholar
Fetter, A. L. 1967 Quantum theory of superfluid vortices. II. Type-II superconductors. Phys. Rev. 163, 390400.CrossRefGoogle Scholar
Feynman, R. P., Leighton, R. B. & Sands, M. 1964 The Feynman Lectures on Physics, vol. 2. Addison-Wesley, see p. 13-4 (on magnetic-field lines) and p. 40-10 (on vortex lines).Google Scholar
Goldstein, S. 1960 Lectures on Fluid Mechanics. Interscience, see p. 18.Google Scholar
Hadamard, J. 1903 Leçons sur la Propagation des Ondes et les Équations de l'Hydrodynamique. Hermann, see p. 79.Google Scholar
Helmholtz, H. 1858 Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Z. Reine Angew. Math. 55, 2555 (English translation by P. G. Tait Phil. Mag. 33, 485–512 (1867)).Google Scholar
Kellogg, O. D. 1929 Foundations of Potential Theory. Springer, see pp. 4142.CrossRefGoogle Scholar
Kundu, P. K. & Cohen, I. M. 2002 Fluid Mechanics, 2nd edn. Academic, see p. 134.Google Scholar
Lamb, H. 1879 Treatise on the Mathematical Theory of the Motion of Fluids. Cambridge University Press, see p. 149.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press, see p. 203.Google Scholar
Lighthill, M. J. 1963 Introduction. boundary layer theory. In Laminar Boundary Layers (ed. Rosenhead, L.), pp. 46113. Oxford University Press, see p. 51.Google Scholar
Maxwell, J. C. 1875 Atom. In Encyclopædia Britannica, Ninth edn., pp. 3648. See The Scientific Papers of James Clerk Maxwell (ed. Niven, W. D.), Cambridge University Press, 1890, Vol. 2, p. 470.Google Scholar
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35, 117129.CrossRefGoogle Scholar
Moffatt, H. K. 1988 Generalised vortex rings with and without swirl. Fluid Dyn. Res. 3, 2230.Google Scholar
Nolan, D. S. 2001 The stabilizing effects of axial stretching on turbulent vortex dynamics. Phys. Fluids 13, 17241738.CrossRefGoogle Scholar
Ottino, J. M. 1990 Mixing, chaotic advection, and turbulence. Annu. Rev. Fluid Mech. 22, 207254.CrossRefGoogle Scholar
Poincaré, H. 1890 Sur le problème de trois corps et les équations de la dynamique. Acta Mathematique 13, 1270.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Saffman, P. G. 1990 A model of vortex reconnection. J. Fluid Mech. 212, 395402.Google Scholar
Saffman, P. G. 1995 Vortex Dynamics. Cambridge University Press, see p. 9.Google Scholar
Sarpkaya, T. 1996 Vorticity, free surface, and surfactants. Annu. Rev. Fluid Mech. 28, 83128.CrossRefGoogle Scholar
Sommerfeld, A. 1950 Mechanics of Deformable Bodies. Academic, see p. 136.Google Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. Lond. A 223, 289343.Google Scholar
Thomson, W. 1867 On vortex atoms. Proc. R. Soc. Edin. 6, 94105.CrossRefGoogle Scholar
Thomson, W. 1869 On vortex motion. Trans. R. Soc. of Edin. 25, 217260.CrossRefGoogle Scholar
Truesdell, C. 1954 The Kinematics of Vorticity. Indiana University Press, see p. 17.Google Scholar
Webster, D. R. & Longmire, E. K. 1998 Vortex rings from cylinders with inclined exits. Phys. Fluids 10, 400416.CrossRefGoogle Scholar
Widnall, S. E. 1975 The structure and dynamics of vortex filaments. Annu. Rev. Fluid Mech. 7, 141165.Google Scholar
Zhang, C., Shen, L. & Yue, D. K.-P. 1999 The mechanism of vortex connection at a free surface. J. Fluid Mech. 384, 207241.CrossRefGoogle Scholar