Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T16:19:17.419Z Has data issue: false hasContentIssue false

On the spreading of impacting drops under the influence of a vertical magnetic field

Published online by Cambridge University Press:  21 November 2016

Jie Zhang
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China
Tian-Yang Han
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China
Juan-Cheng Yang
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China
Ming-Jiu Ni*
Affiliation:
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, China
*
Email address for correspondence: [email protected]

Abstract

A theoretical model is developed to predict the maximum spreading of liquid metal drops when impacting onto dry surfaces under the influence of a vertical magnetic field. This model, which is constructed based on the energy conversion principle, agrees very well with the numerical results, covering a wide range of impact speeds, contact angles and magnetic strengths. When there is no magnetic field, we found that the maximum spreading factor can be predicted well by an interpolating scheme between the viscous and capillary effects, as proposed by Laan et al. (Phys. Rev. Appl., vol. 2 (4), 2014, 044018). However, when gradually increasing the magnetic field strength, the induced Lorentz forces are dominant over the viscous and capillary forces, taking the spreading behaviour into the ‘Joule regime’, where the Joule dissipation is significant. For most situations of practical interest, namely when the strength of the magnetic field is less than 3 T, all three energy conversion routes are important. Therefore, we determine the correct scaling behaviours for the magnetic influence by first equating the loss of kinetic energy to the Joule dissipation in the Joule regime, then by interpolating it with the viscous dissipation and the capillary effects, which allows for a universal rescaling. By plotting the numerical results against the theoretical model, all the results can be rescaled onto a single curve regardless of the materials of the liquid metals or the contact angles of the surfaces, proving that our theoretical model is correct in predicting the maximum spreading factor by constructing a balanced formula between kinetic energy, capillary energy, viscous dissipation energy and Joule dissipation energy.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agbaglah, G., Thoraval, M.-J., Thoroddsen, S., Zhang, L., Fezzaa, K. & Deegan, R. 2015 Drop impact into a deep pool: vortex shedding and jet formation. J. Fluid Mech. 764, R1.CrossRefGoogle Scholar
Bennett, T. & Poulikakos, D. 1993 Splat-quench solidification: estimating the maximum spreading of a droplet impacting a solid surface. J. Mater. Sci. 28 (4), 963970.CrossRefGoogle Scholar
Brackbill, J., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100 (2), 335354.CrossRefGoogle Scholar
Bussmann, M., Chandra, S. & Mostaghimi, J. 2000 Modeling the splash of a droplet impacting a solid surface. Phys. Fluids 12 (12), 31213132.CrossRefGoogle Scholar
Chandra, S. & Avedisian, C. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.Google Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Collings, E., Markworth, A., Mccoy, J. & Saunders, J. 1990 Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate. J. Mater. Sci. 25 (8), 36773682.CrossRefGoogle Scholar
Eggers, J., Fontelos, M., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22 (6), 062101.CrossRefGoogle Scholar
Fedorchenko, A., Wang, A.-B. & Wang, Y.-H. 2005 Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface. Phys. Fluids 17 (9), 093104.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Josserand, C. & Zaleski, S. 2003 Droplet splashing on a thin liquid film. Phys. Fluids 15 (6), 16501657.CrossRefGoogle Scholar
Laan, N., de Bruin, K., Bartolo, D., Josserand, C. & Bonn, D. 2014 Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2 (4), 044018.CrossRefGoogle Scholar
Lee, J., Derome, D., Guyer, R. & Carmeliet, J. 2016 Modeling the maximum spreading of liquid droplets impacting wetting and nonwetting surfaces. Langmuir 32 (5), 12991308.CrossRefGoogle ScholarPubMed
Lee, J., Laan, N., de Bruin, K., Skantzaris, G., Shahidzadeh, N., Derome, D., Carmeliet, J. & Bonn, D. 2015 Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786, R4.CrossRefGoogle Scholar
Molokov, S. & Reed, C.2000 Review of free-surface mhd experiments and modeling. Tech. Rep. Argonne National Lab., IL (US).CrossRefGoogle Scholar
Pasandideh-Fard, M., Qiao, Y., Chandra, S. & Mostaghimi, J. 1996 Capillary effects during droplet impact on a solid surface. Phys. Fluids 8 (3), 650659.CrossRefGoogle Scholar
Popinet, S. 2009 An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228 (16), 58385866.CrossRefGoogle Scholar
Roisman, I., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458, 14111430.CrossRefGoogle Scholar
Tagawa, T. 2005 Numerical simulation of a falling droplet of liquid metal into a liquid layer in the presence of a uniform vertical magnetic field. ISIJ Int. 45 (7), 954961.CrossRefGoogle Scholar
Thoraval, M.-J., Takehara, K., Etoh, T., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S. 2012 von kármán vortex street within an impacting drop. Phys. Rev. Lett. 108 (26), 264506.CrossRefGoogle Scholar
Tsai, P., Hendrix, M., Dijkstra, R., Shui, L. & Lohse, D. 2011 Microscopic structure influencing macroscopic splash at high weber number. Soft Matt. 7 (24), 1132511333.CrossRefGoogle Scholar
Ukiwe, C. & Kwok, D. 2005 On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21 (2), 666673.CrossRefGoogle ScholarPubMed
Wang, J.-J., Zhang, J., Ni, M.-J. & Moreau, R. 2014 Numerical study of single droplet impact onto liquid metal film under a uniform magnetic field. Phys. Fluids 26 (12), 122107.CrossRefGoogle Scholar
Wildeman, S., Visser, C., Sun, C. & Lohse, D. 2016 On the spreading of impacting drops. J. Fluid Mech. 805, 636655.CrossRefGoogle Scholar
Yarin, A. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.CrossRefGoogle Scholar
Zhang, J., Ni, M.-J. & Moreau, R. 2016 Rising motion of a single bubble through a liquid metal in the presence of a horizontal magnetic field. Phys. Fluids 28 (3), 032101.CrossRefGoogle Scholar