Published online by Cambridge University Press: 24 August 2004
We consider the flow of an incompressible particle-laden fluid through the application of the so-called ‘dusty-gas’ equations, which treat the fluid/particle suspension as two continua. The two phases are described by their individual field equations and interact through a Stokes-drag mechanism. The particular flow we consider is of boundary-layer type, corresponding to the downstream development of a Glauert-type jet adjacent to a horizontal boundary (the inclusion of the particulate phase requires the flow to be non-self-similar). We solve the governing boundary-layer equations through a numerical spatial marching technique in the three distinct cases of (i) weak gravitational influence, (ii) a jet ‘above’ a wall under the action of gravity and (iii) a jet ‘below’ a wall under the action of gravity.
The qualitative and quantitative features of the three cases are quite different and are presented in detail. Of particular interest is the development of a stagnation point in the particle velocity field at a critical downstream location in case (i), the development of fluid/particle flow reversal in case (ii) and the development of ‘shock’ solutions and particle-free regions in case (iii). Asymptotic descriptions are given of the critical phenomena, which support the numerical results. It is found that inclusion of a Saffman force has no substantial effect on either the location or structure of the stagnation-point region.