Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T18:31:07.890Z Has data issue: false hasContentIssue false

On the rotational compressible Taylor flow in injection-driven porous chambers

Published online by Cambridge University Press:  30 April 2008

BRIAN A. MAICKE
Affiliation:
Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
JOSEPH MAJDALANI*
Affiliation:
Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee Space Institute, Tullahoma, TN 37388, USA
*
Author to whom correspondence should be addressed: [email protected].

Abstract

This work considers the compressible flow field established in a rectangular porous channel. Our treatment is based on a Rayleigh–Janzen perturbation applied to the inviscid steady two-dimensional isentropic flow equations. Closed-form expressions are then derived for the main properties of interest. Our analytical results are verified via numerical simulation, with laminar and turbulent models, and with available experimental data. They are also compared to existing one-dimensional theory and to a previous numerical pseudo-one-dimensional approach. Our analysis captures the steepening of the velocity profiles that has been reported in several studies using either computational or experimental approaches. Finally, explicit criteria are presented to quantify the effects of compressibility in two-dimensional injection-driven chambers such as those used to model slab rocket motors.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apte, S. & Yang, V. 2001 Unsteady flow evolution in a porous chamber with surface mass injection. Part I: Free oscillation. AIAA J. 39, 15771586.CrossRefGoogle Scholar
Balachandar, S., Buckmaster, J. D. & Short, M. 2001 The generation of axial vorticity in solid-propellant rocket-motor flows. J. Fluid Mech. 429, 283305.CrossRefGoogle Scholar
Balakrishnan, G., Liñán, A. & Williams, F. A. 1991 Compressible effects in thin channels with injection. AIAA J. 29, 21492154.CrossRefGoogle Scholar
Balakrishnan, G., Liñán, A. & Williams, F. A. 1992 Rotational inviscid flow in laterally burning solid propellant rocket motors. J. Propul. Power 8, 11671176.CrossRefGoogle Scholar
Beddini, R. A. & Roberts, T. A. 1988 Turbularization of an acoustic boundary layer on a transpiring surface. AIAA J. 26 (8), 917923.CrossRefGoogle Scholar
Beddini, R. A. & Roberts, T. A. 1992 Response of propellant combustion to a turbulent acoustic boundary layer. J. Propul. Power 8, 290296.CrossRefGoogle Scholar
Berman, A. S. 1953 Laminar flow in channels with porous walls. J. Appl. Phys. 24, 12321235.CrossRefGoogle Scholar
Casalis, G., Avalon, G. & Pineau, J.-P. 1998 Spatial instability of planar channel flow with fluid injection through porous walls. Phys. Fluids 10, 25582568.CrossRefGoogle Scholar
Chu, W.-W., Yang, V. & Majdalani, J. 2003 Premixed flame response to acoustic waves in a porous-walled chamber with surface mass injection. Combust. Flame 133, 359370.CrossRefGoogle Scholar
Culick, F. E. C. 1966 Rotational axisymmetric mean flow and damping of acoustic waves in a solid propellant rocket. AIAA J. 4, 14621464.CrossRefGoogle Scholar
Flandro, G. A. 1980 Stability prediction for solid propellant rocket motors with high-speed mean flow. Final Tech. AFRPL-TR-79-98. Air Force Rocket Propulsion Laboratory, Edwards AFB, CA.Google Scholar
Gany, A. & Aharon, I. 1999 Internal ballistics considerations of nozzleless rocket motors. J. Propul. Power 15, 866873.CrossRefGoogle Scholar
Janzen, O. 1913 Beitrag zu Einer Theorie der Stationaren Stromung Kompressibler Flussigkeiten. Phys. Z. 14, 639643.Google Scholar
Kaplan, C. 1943 The flow of a compressible fluid past a curved surface. NACA TR 768.Google Scholar
Kaplan, C. 1944 The flow of a compressible fluid past a circular arc profile. NACA TR 994.Google Scholar
Kaplan, C. 1946 Effect of compressibility at high subsonic velocities on the lifting force acting on an elliptic cylinder. NACA TR 834.Google Scholar
King, M. K. 1987 Consideration of two-dimensional flow effects on nozzleless rocket performance. J. Propul. Power 3, 194195.CrossRefGoogle Scholar
Maicke, B. A. & Majdalani, J. 2006 The compressible Taylor flow in slab rocket motors. In AIAA Paper 2006-4957.CrossRefGoogle Scholar
Majdalani, J. 2001 The oscillatory channel flow with arbitrary wall injection. Z. Angew Math. Phys. 52, 3361.CrossRefGoogle Scholar
Majdalani, J. 2005 The compressible Taylor–Culick flow. In AIAA Paper 2005-3542.CrossRefGoogle Scholar
Majdalani, J. 2007 On steady rotational high speed flows: The compressible Taylor–Culick profile. Proc. R. Soc. Lond. A 463, 131162.Google Scholar
Majdalani, J., Vyas, A. B. & Flandro, G. A. 2002 Higher mean-flow approximation for a solid rocket motor with radially regressing walls. AIAA J. 40, 17801788.CrossRefGoogle Scholar
Meiron, D. I., Moore, D. W. & Pullin, D. I. 2000 On steady compressible flows with compact vorticity; the compressible Stuart vortex. J. Fluid Mech. 409, 2949.CrossRefGoogle Scholar
Moore, D. W. & Pullin, D. I. 1998 On steady compressible flows with compact vorticity; the compressible Hill's spherical vortex. J. Fluid Mech. 374, 285303.CrossRefGoogle Scholar
Najjar, F. M., Haselbacher, A., Ferry, J. P., Wasistho, B., Balachandar, S. & Moser, R. 2003 Large-scale multiphase large-eddy simulation of flows in solid-rocket motors. In AIAA Paper 2003-3700.CrossRefGoogle Scholar
Peng, Y. & Yuan, S. W. 1965 Laminar pipe flow with mass transfer cooling. Trans. ASME C: J. Heat Transfer 87, 252258.CrossRefGoogle Scholar
Proudman, I. 1960 An example of steady laminar flow at large Reynolds number. J. Fluid Mech. 9, 593612.CrossRefGoogle Scholar
Rayleigh, Lord 1916 On the flow of a compressible fluid past an obstacle. Phil. Mag. 32, 16.CrossRefGoogle Scholar
Shapiro, A. H. 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. 1. Ronald.Google Scholar
Staab, P. L. & Kassoy, D. R. 1996 Three-dimensional, unsteady, acoustic-shear flow dynamics in a cylinder with sidewall mass addition. Phys. Fluids 9, 37533763.CrossRefGoogle Scholar
Sutton, G. P. & Biblarz, O. 2001 Rocket Propulsion Elements, 7th edn. John Wiley.Google Scholar
Taylor, G. I. 1956 Fluid flow in regions bounded by porous surfaces. Proc. R. Soc. Lond. A 234, 456475.Google Scholar
Traineau, J.-C., Hervat, P. & Kuentamann, P. 1986 Cold-flow simulation of a two-dimensional nozzleless solid rocket motor. In AIAA Paper 86-1447.CrossRefGoogle Scholar
Vuillot, F. & Avalon, G. 1991 Acoustic boundary layers in solid propellant rocket motors using Navier–Stokes equations. J. Propul. Power 7, 231239.CrossRefGoogle Scholar
Wasistho, B., Balachandar, R. & Moser, R. D. 2004 Compressible wall-injection flows in laminar, transitional, and turbulent regimes: Numerical prediction. J. Space Rockets 41, 915924.CrossRefGoogle Scholar
Yuan, S. W. 1956 Further investigation of laminar flow in channels with porous walls. J. Appl. Phys. 27, 267269.CrossRefGoogle Scholar
Yuan, S. W. 1959 Cooling by protective fluid films. In Turbulent Flows and Heat Transfer (ed. Lin, C. C.), vol. 5. Princeton University Press.Google Scholar
Zhou, C. & Majdalani, J. 2002 Improved mean flow solution for slab rocket motors with regressing walls. J. Propul. Power 18, 703711.CrossRefGoogle Scholar