Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T04:54:22.894Z Has data issue: false hasContentIssue false

On the origin and propagation of perturbations that cause shock train inherent unsteadiness

Published online by Cambridge University Press:  28 December 2018

Robin L. Hunt*
Affiliation:
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Mirko Gamba
Affiliation:
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA
*
Email address for correspondence: [email protected]

Abstract

In constant area back pressured ducts, shock trains exhibit inherent unsteadiness where the shock system fluctuates about its time-averaged position despite constant bulk inflow and outflow conditions. In this work, the underlying causes of inherent unsteadiness are identified and the flow dynamics of the system is studied for a shock train in a Mach 2.0 ducted flow that is mechanically back pressured. High-speed schlieren movies and pressure measurements are collected to quantify the shock system fluctuations. Cross-spectral analysis of this data is used to identify specific perturbations, i.e. the fluid phenomena that impact the shock train motion. Key information about each perturbation is also obtained, including where it originates, what direction it travels and how it impacts each shock. Oil flow visualization and particle image velocimetry are then used to gain insight into the physical structure of perturbations and the flow phenomena that generate them. The results identify a complex, frequency-dependent dynamical system that is influenced by (i) upstream propagating acoustic waves that emanate from separation bubbles, (ii) vortices that shed from separation bubbles and convect downstream and (iii) upstream propagating acoustic waves generated in the diffuser. With this information, a scaling argument for the shock train inherent unsteadiness is presented.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benek, J. A., Suchyta, C. J. & Babinsky, H. 2016 Simulations of incident shock boundary layer interactions. AIAA Paper 2016-0352.Google Scholar
Bogar, T. J. 1983 Structure of self-excited oscillations in transonic diffuser flows. AIAA J. 24 (1), 5461.Google Scholar
Carroll, B. F. & Dutton, J. C. 1990 Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts. J. Propul. Power 6 (2), 186193.Google Scholar
Chen, C. P., Sajben, M. & Kroutil, J. C. 1979 Shock-wave oscillations in a transonic diffuser flow. AIAA J. 17 (10), 10761083.Google Scholar
Clemens, N. T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46 (1), 469492.Google Scholar
Cox-Stouffer, S. K. & Hagenmaier, M. A. 2001 The effect of aspect ratio on isolator performance. AIAA Paper 2001-0519.Google Scholar
Crocco, L. 1958 One-dimensional treatment of steady gas dynamics. In Fundamentals of Gas Dynamics: High Speed Aerodynamics and Jet Propulsion (ed. Emmons, H. W.), vol. 3, pp. 110130. Princeton University Press.Google Scholar
Do, H., Im, S.-K., Mungal, M. G. & Cappelli, M. A. 2011 The influence of boundary layers on supersonic inlet flow unstart induced by mass injection. Exp. Fluids 51, 679691.Google Scholar
Driver, D. M., Seegmiller, H. L. & Marvin, J. G. 1987 Time-dependent behaviour of a reattaching shear layer. AIAA J. 25 (7), 914919.Google Scholar
Dupont, P., Haddad, C. & Debiève, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.Google Scholar
Dupont, P., Piponniau, S., Sidorenko, A. & Debiève, J. F. 2008 Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA J. 46 (6), 13651370.Google Scholar
Dussauge, J.-P., Dupont, P. & Debieve, J.-F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10 (2), 8591.Google Scholar
Fiévet, R., Koo, H., Raman, V. & Auslender, A. H. 2017 Numerical investigation of shock-train response to inflow boundary-layer variations. AIAA J. 55 (9), 28882901.Google Scholar
Funderburk, M. & Narayanaswamy, V. 2016 Experimental investigation of primary and corner shock boundary layer interactions at mild back pressure ratios. Phys. Fluids 28, 086102.Google Scholar
Gaitonde, D. V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 8099.Google Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2007 Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369394.Google Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2009 Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J. Fluid Mech. 636, 397425.Google Scholar
Garcia, D. 2010 Robust smoothing of gridded data in one and higher dimensions with missing values. Comput. Stat. Data Anal. 54 (4), 11671178.Google Scholar
Gawehn, T., Gulhan, A., Al-Hasan, N. S. & Schnerr, G. H. 2010 Experimental and numerical analysis of the structure of pseudo-shock systems in laval nozzles with parallel side walls. Shock Waves 20, 297306.Google Scholar
Geerts, J. S. & Yu, K. H. 2016 Three-dimensional nature of shock trains in rectangular scramjet isolators. AIAA Paper 2016-1164.Google Scholar
Gnani, F., Zare-Behtash, H. & Kontis, K. 2016 Pseudo-shock waves and their interactions in high-speed intakes. Prog. Aerosp. Sci. 82, 3656.Google Scholar
Graftieaux, L., Michard, M. & Grosjean, N. 2001 Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 1422.Google Scholar
Grilli, M., Schmid, P. J., Hickel, S. & Adams, N. A. 2012 Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction. J. Fluid Mech. 700, 1628.Google Scholar
Handa, T., Masuda, M. & Matsuo, K. 2003 Mechanism of shock wave oscillation in transonic diffusers. AIAA J. 41 (1), 6470.Google Scholar
Handa, T., Masuda, M. & Matsuo, K. 2005 Three-dimensional normal shock-wave/boundary-layer interaction in a rectangular duct. AIAA J. 43 (10), 21822187.Google Scholar
Hardin, J. C.1986 Introduction to time series analysis. NASA Tech. Rep. 1145, 38–39.Google Scholar
Humble, R. A., Scarano, F. & van Oudheusden, B. W. 2009 Unsteady flow organization of a shock wave/turbulent boundary layer interaction. In IUTAM Symposium on Unsteady Separated Flows and their Control (ed. Braza, M. & Hourigan, K.), vol. 14, pp. 319330. Springer.Google Scholar
Hunt, R. L. & Gamba, M. 2018 Shock train unsteadiness characteristics, oblique-to-normal transition, and three-dimensional leading shock structure. AIAA J. 56 (4), 15691587.Google Scholar
Ikui, T., Matsuo, K. & Nagai, M. 1974a The mechanism of pseudo-shock waves. Bull. JSME 17 (108), 731739.Google Scholar
Ikui, T., Matsuo, K., Nagai, M. & Honjo, M. 1974b Oscillation phenomena of pseudo-shock waves. Bull. JSME 17 (112), 12781285.Google Scholar
Ikui, T., Matsuo, K. & Sasaguchi, K. 1981 Modified diffusion model of pseudo-shock waves considering upstream boundary layers. Bull. JSME 24 (197), 19201927.Google Scholar
Kiya, M. & Sasaki, K. 1983 Structure of a turbulent separation bubble. J. Fluid Mech. 137, 83113.Google Scholar
Koo, H. & Raman, V. 2012 Large-eddy simulation of a supersonic inlet-isolator. AIAA J. 50 (7), 15961613.Google Scholar
Lindstrom, C. D., Davis, D., Williams, S. & Tam, C. 2009 Shock-train structure resolved with absorption spectroscopy part II: analysis and CFD comparison. AIAA J. 47 (10), 23792390.Google Scholar
Matsuo, K., Miyazato, Y. & Kim, H.-D. 1999 Shock train and pseudo-shock phenomena in internal gas flows. Prog. Aerosp. Sci. 35 (1), 33100.Google Scholar
Morgan, B., Duraisamy, K. & Lele, S. K. 2014 Large-eddy simulations of a normal shock train in a constant-area isolator. AIAA J. 52 (3), 539558.Google Scholar
Nill, L. & Mattick, A. 1996 An experimental study of shock structure in a normal shock train. AIAA Paper 96-0799.Google Scholar
Oudheusden, B. W., Jöbsis, A. J. P., Scarano, F. & Souverein, L. J. 2011 Investigation of the unsteadiness of a shock-reflection interaction with time-resolved particle image velocimetry. Shock Waves 21, 397409.Google Scholar
Piponniau, S., Dussauge, J. P., Debiève, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.Google Scholar
Poggie, J., Bisek, N. J., Kimmel, R. L. & Stanfield, S. A. 2015 Spectral characteristics of separation shock unsteadiness. AIAA J. 53 (1), 200214.Google Scholar
Rodi, P. E., Emami, S. & Trexler, C. A. 1996 Unsteady pressure behavior in a ramjet/scramjet inlet. J. Propul. Power 12 (3), 486493.Google Scholar
Samimy, M. & Lele, S. K. 1991 Motion of particles with inertia in a compressible free shear layer. Phys. Fluids A 3 (8), 19151923.Google Scholar
Smart, M. K. 2015 Flow modeling of pseudoshocks in backpressured ducts. AIAA J. 53 (12), 35773588.Google Scholar
Souverein, L. J., Dupont, P., Debiève, J.-F., Dussauge, J.-P., Van Oudheusden, B. W. & Scarano, F. 2010 Effect of interaction strength on unsteadiness in shock-wave-induced separations. AIAA J. 48 (7), 14801493.Google Scholar
Souverein, L. J., Oudheusden, B. W., Scarano, F. & Dupont, P. 2009 Application of a dual-plane particle image velocimetry (dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction. Meas. Sci. Technol. 20 (7), 074003.Google Scholar
Srikant, S., Wagner, J. L., Valdivia, A., Akella, M. R. & Clemens, N. T. 2010 Unstart detection in a simplified-geometry hypersonic inlet-isolator flow. J. Propul. Power 26 (5), 10591071.Google Scholar
Su, W.-Y., Ji, Y.-X. & Chen, Y. 2016 Effects of dynamic backpressure on pseudoshock oscillations in scramjet inlet-isolator. J. Propul. Power 32 (2), 516528.Google Scholar
Sugiyama, H., Takeda, H., Zhang, J., Okuda, K. & Yamagishi, H. 1988 Locations and oscillation phenomena of pseudo-shock waves in a straight rectangular duct. JSME Intl J. 31 (1), 915.Google Scholar
Sun, L. Q., Sugiyama, H., Mizobata, K. & Fukuda, K. 2003 Numerical and experimental investigations on the Mach 2 pseudo-shock wave in a square duct. J. Vis. 6 (4), 363370.Google Scholar
Valdivia, A., Yuceil, K. B., Wagner, J. L., Clemens, N. T. & Dolling, D. S. 2014 Control of supersonic inlet-isolator unstart using active and passive vortex generators. AIAA J. 52 (6), 12071218.Google Scholar
Varadarajan, P. A. & Roe, P. L. 2011 Geometrical shock dynamics and engine unstart. AIAA Paper 2011-3909.Google Scholar
Wagner, J. L., Yuceil, K. B. & Clemens, N. T. 2010 Velocimetry measurements of unstart of an inlet-isolator model in Mach 5 flow. AIAA J. 48 (9), 18751888.Google Scholar
Wagner, J. L., Yuceil, K. B., Valdivia, A., Clemens, N. T. & Dolling, D. S. 2009 Experimental investigation of unstart in an inlet/isolator model in Mach 5 flow. AIAA J. 47 (6), 15281542.Google Scholar
Waltrup, P. J. & Billig, F. S. 1973 Structure of shock waves in cylindrical ducts. AIAA J. 11 (10), 14041408.Google Scholar
Weiss, J., Mohammed-Taifour, A. & Schwaab, Q. 2015 Unsteady behavior of a pressure-induced turbulent separation bubble. AIAA J. 53 (9), 26342645.Google Scholar
Wu, M. & Martín, M. P. 2008 Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.Google Scholar
Xiong, B., Fan, X.-Q., Wang, X.-g. & Tao, Y. 2018 Analysis and modelling of unsteady shock train motions. J. Fluid Mech. 846, 240262.Google Scholar
Xiong, B., Wang, Z.-G., Fan, X.-Q. & Wang, Y. 2017 Experimental study on the flow separation and self-excited oscillation phenomenon in a rectangular duct. Acta Astron. 133, 158165.Google Scholar
Yamane, R., Kondo, E., Tomita, Y. & Sakae, N. 1984a Vibration of pseudo-shock in straight duct: 1st report, fluctuation of static pressure. Bull. JSME 27 (229), 13851392.Google Scholar
Yamane, R., Takahashi, M. & Saito, H. 1984b Vibration of pseudo-shock in straight duct, 2nd report: correlation of static pressure fluctuation. Bull. JSME 27 (229), 13931398.Google Scholar

Hunt and Gamba supplementary movie

Oil flow visualization of a shock train in Mach 2.0 ducted flow. Low viscosity oil (100 cSt) is used to visualize the low frequency unsteadiness of the separation bubbles. Movie recorded at 100 frames/sec and played back the same rate.

Download Hunt and Gamba supplementary movie(Video)
Video 9.6 MB