Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T08:37:40.483Z Has data issue: false hasContentIssue false

On the near-wall characteristics of acceleration in turbulence

Published online by Cambridge University Press:  23 July 2010

K. YEO
Affiliation:
Department of Mechanical Engineering, Yonsei University, Seoul 120–749, Korea
B.-G. KIM
Affiliation:
Department of Computational Science and Engineering, Yonsei University, Seoul 120–749, Korea
C. LEE*
Affiliation:
Department of Mechanical Engineering, Yonsei University, Seoul 120–749, Korea Department of Computational Science and Engineering, Yonsei University, Seoul 120–749, Korea
*
Email address for correspondence: [email protected]

Abstract

The behaviour of fluid-particle acceleration in near-wall turbulent flows is investigated in numerically simulated turbulent channel flows at low to moderate Reynolds numbers, Reτ = 180~600). The acceleration is decomposed into pressure-gradient (irrotational) and viscous contributions (solenoidal acceleration) and the statistics of each component are analysed. In near-wall turbulent flows, the probability density function of acceleration is strongly dependent on the distance from the wall. Unexpectedly, the intermittency of acceleration is strongest in the viscous sublayer, where the acceleration flatness factor of O(100) is observed. It is shown that the centripetal acceleration around coherent vortical structures is an important source of the acceleration intermittency. We found sheet-like structures of strong solenoidal accelerations near the wall, which are associated with the background shear modified by the interaction between a streamwise vortex and the wall. We found that the acceleration Kolmogorov constant is a linear function of y+ in the log layer. The Reynolds number dependence of the acceleration statistics is investigated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

References

REFERENCES

Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. & Toschi, F. 2004 Multifractal statistics of Lagrangian velocity and acceleration in turbulence. Phys. Rev. Lett. 93, 064502.CrossRefGoogle ScholarPubMed
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-sacle motions in turbulent channel flow. J. Fluid Mech. 310, 269292.CrossRefGoogle Scholar
Brooke, J. W., Kontomaris, K., Hanratty, T. J. & McLaughlin, J. B. 1992 Turbulent deposition and trapping of aerosols at a wall. Phys. Fluids A 4, 825834.CrossRefGoogle Scholar
Calzavarnini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630, 179189.CrossRefGoogle Scholar
Gerashchenko, S., Sharp, N. S., Neuscamman, S. & Warhaft, Z. 2008 Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech. 617, 255281.CrossRefGoogle Scholar
Gotoh, R. & Rogallo, R. S. 1999 Intermittency and scaling of pressure at small scales in forced isotropic turbulence. J. Fluid Mech. 396, 257285.CrossRefGoogle Scholar
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007 Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters. J. Fluid Mech. 589, 83102.CrossRefGoogle Scholar
Gylfason, A., Ayyalasomayajula, S. & Warhaft, Z. 2004 Intermittency, pressure and acceleration statistics from hot-wire measurements in wind-tunnel turbulence. J. Fluid Mech. 501, 213229.CrossRefGoogle Scholar
Hill, R. J. 2002 Scaling of acceleration in locally isotropic turbulence. J. Fluid Mech. 452, 361370.CrossRefGoogle Scholar
Hill, R. J. & Thoroddsen, S. T. 1997 Experimental evaluation of acceleration correlations for locally isotropic turbulence. Phys. Rev. E 55, 16001606.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech 332, 185214.CrossRefGoogle Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
La Porta, A., Voth, G. A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2001 Fluid-particle accelerations in fully developed turbulence. Nature 409, 10171019.CrossRefGoogle ScholarPubMed
Lee, S. & Lee, C. 2005 Intermittency of acceleration in isotropic turbulence. Phys. Rev. E 71, 056310.CrossRefGoogle ScholarPubMed
Lee, C., Yeo, K. & Choi, J.-I. 2004 Intermittent nature of acceleration in near-wall turbulence. Phys. Rev. Lett. 92, 144502.CrossRefGoogle ScholarPubMed
Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J., Kim, J. & Henningson, D. S. 1999 An efficient spectral method for simulation of incompressible flow over a flat plate. Tech. Rep. 1999:11. Royal Institute of Technology, Stockholm.Google Scholar
Lüthi, B., Tsinober, A. & Kinzelbach, W. 2005 Lagrangian measurement of vorticity dynamics in turbulent flow. J. Fluid Mech. 528, 87118.CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. MIT Press.Google Scholar
Mordant, N., Delour, J., Léveque, E., Arnéodo, A. & Pinton, J.-F. 2002 Long time correlations in Lagrangian dynamics: a key to intermittency in turbulence. Phys. Rev. Lett. 89, 254502.CrossRefGoogle ScholarPubMed
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11, 943945.CrossRefGoogle Scholar
Pope, S.B. 1994 Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 2363.CrossRefGoogle Scholar
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Trubulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99, 184502.CrossRefGoogle ScholarPubMed
Reynolds, A. M. 1999 A second-order Lagrangian stochastic model for particle trajectories in inhomogeneous turbulence. Q. J. R. Meteorol. Soc. 125, 17351746.Google Scholar
Ruetsch, G. R. & Maxey, M. R. 1992 The evolution of small-scale structures in homogeneous isotropic turbulence. Phys. Fluids A 4, 27472760.CrossRefGoogle Scholar
Sawford, B. L. 1991 Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 3, 15771586.CrossRefGoogle Scholar
Setyawan, H., Shimada, M., Ohtsuka, K. & Okuyama, K. 2002 Visualization and numerical simulation of fine particle transport in a low-pressure parallel plate chemical vapor deposition reactor. Chem. Engng Sci. 57, 497506.CrossRefGoogle Scholar
Toschi, F. & Bodenschatz, E. 2009 Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375404.CrossRefGoogle Scholar
Tsinober, A., Vedula, P. & Yeung, P. K. 2001 Random Taylor hypothesis and the behavior of local and convective accelerations in isotropic turbulence. Phys. Fluids 13, 19741984.CrossRefGoogle Scholar
Vedula, P. & Yeung, P. K. 1999 Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys. Fluids 11, 1208–1200.CrossRefGoogle Scholar
Volk, R., Calzavarnini, E., Verhille, G., Lohse, D., Mordant, N., Pinton, J.-F. & Toschi, F. 2008 Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations. Physica D 237, 20842089.CrossRefGoogle Scholar
Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz, E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121160.Google Scholar
Yeo, K., Dong, S., Climent, E. & Maxey, M. R. 2010 Modulation of homogeneous turbulence seeded with finite size bubbles or particles. Intl J. Multiph. Flow 36, 221233.CrossRefGoogle Scholar
Yeo, K., Kim, B.-G. & Lee, C. 2009 Eulerian and Lagrangian statistics in stably stratified turbulent channel flows. J. Turbul. 10, 17.CrossRefGoogle Scholar
Yeung, P. K. 1997 One- and two-particle Lagrangian acceleration correlations in numerically simulated homogeneous turbulence. Phys. Fluids 9, 29812990.CrossRefGoogle Scholar
Yeung, P. K. & Pope, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531586.CrossRefGoogle Scholar
Yeung, P. K., Pope, S. B., Kurth, E. A. & Lamorgese, A. G. 2007 Lagrangian conditional statics, acceleration and local relative motion in numerically simulated isotropic turbulence. J. Fluid Mech. 582, 399422.CrossRefGoogle Scholar
Yeung, P. K., Pope, S. B., Lamorgese, A. G. & Donzis, D. A. 2006 Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103.CrossRefGoogle Scholar