Published online by Cambridge University Press: 19 April 2006
Solutions have been obtained for a family of unsteady three-dimensional boundary-layer flows which approach separation as a result of the imposed pressure gradient. These solutions have been obtained in a co-ordinate system which is moving with a constant velocity relative to the body-fixed co-ordinate system. The flows studied are those which are steady in the moving co-ordinate system. The boundary-layer solutions have been obtained in the moving co-ordinate system using the technique of semi-similar solutions. The behaviour of the solutions as separation is approached has been used to infer the physical characteristics of unsteady three-dimensional separation.
In the numerical solutions of the three-dimensional unsteady laminar boundary-layer equations, subject to an imposed pressure distribution, the approach to separation is characterized by a rapid increase in the number of iterations required to obtain converged solutions at each station and a corresponding rapid increase in the component of velocity normal to the body surface. The solutions obtained indicate that separation is best observed in a co-ordinate system moving with separation where streamlines turn to form an envelope which is the separation line, as in steady three-dimensional flow, and that this process occurs within the boundary layer (away from the wall) as in the unsteady two-dimensional case. This description of three-dimensional unsteady separation is a generalization of the two-dimensional (Moore-Rott-Sears) model for unsteady separation.