Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T17:14:30.002Z Has data issue: false hasContentIssue false

On the motion of suspended particles in stationary homogeneous turbulence

Published online by Cambridge University Press:  12 April 2006

L. M. Pismen
Affiliation:
Department of Chemical Engineering, Israel Institute of Technology, Haifa
A. Nir
Affiliation:
Department of Chemical Engineering, Israel Institute of Technology, Haifa

Abstract

The closed equations for the velocity correlation tensor and for the mean-squared displacement of a particle suspended in a stationary homogeneous turbulent flow, with an arbitrary linear law of fluid-particle interaction, are obtained using two assumptions suggested previously for the problem of turbulent self-diffusion: the ‘independence approximation’ and the Gaussian property of the functional distribution of particle velocities. The numerical solution of the derived equations is given for an isotropic system with a model turbulence spectrum. The following characteristics of the particle motion are obtained: (a) the mean kinetic energy, (b) diffusivity, (c) rate of energy dissipation, (d) velocity correlation function, and (e) the correlation function of the relative fluid-particle velocity. The impact of various spectral modes on the characteristics of the particle motion is discussed.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Corrsin, S. 1959 Adv. in Geophys. 6, 161184.
Csanady, G. T. 1963 J. Atmos. Sci. 20, 201208.
Friedlander, S. K. 1957 A.I.Ch.E. J. 3, 381385.
Goldschmidt, V. W. & Householder, M. K. 1969 J. Engng Mech. Div., Proc. A.S.C.E. 95, 1345.
Kraichnan, R. H. 1970 Phys. Fluids 13, 2231.
Kuboi, R., Komasawa, I. & Otake, T. 1974 Chem. Engng Sci. 29, 651657.
Levich, E. & Pismen, L. M. 1976 Chem. Phys. Lett. 40, 243246.
Levins, D. M. & Glastonbury, J. R. 1972 Trans. Inst. Chem. Engrs 50, 3241.
Lilly, G. P. 1973 Ind. Engng Chem. Fund. 12, 268275.
Lumley, J. L. 1957 Ph.D. dissertation, The Johns Hopkins University.
Lumley, J. L. 1976 Topics in Appl. Phys. 12, 289324.
Lundgren, T. S. & Pointin, Y. B. 1976 Phys. Fluids 19, 355358.
Meek, C. C. & Jones, B. G. 1973 J. Atmos. Sci. 30, 239244.
Phythian, R. 1975 J. Fluid Mech. 67, 145153.
Reeks, M. 1977 J. Fluid Mech. 83, 529546.
Saffman, P. G. 1963 Appl. Sci. Res. A 11, 245255.
Snyder, W. H. & Lumley, H. L. 1971 J. Fluid Mech. 48, 4171.
Soo, S. L. 1967 Fluid Dynamics of Multiphase Systems. Blaisdell.
Tchen, C. M. 1947 Ph.D. dissertation, University of Delft.
Weinstock, J. 1976 Phys. Fluids 19, 17021712.
Yudine, M. I. 1959 Adv. in Geophys. 6, 185191.