Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-19T00:51:38.781Z Has data issue: false hasContentIssue false

On the linear stability of the inviscid Kármán vortex street

Published online by Cambridge University Press:  21 April 2006

Javier Jimenez
Affiliation:
Applied Mathematics, California Institute of Technology, Pasadena, CA 91125, USA Present address: IBM Scientific Centre, P. Castellana 4, 28046, Madrid, Spain.

Abstract

The classical point-vortex model for a Kármán vortex street is linearly stable only for an isolated case. This property has been shown numerically to hold for other, more complicated, models of the same flow. It is shown here that it is a consequence of the Hamiltonian structure of the model, related to the codimension of the set of matrices with a particular Jordan block structure in the space of Hamiltonian matrices, and that it can be expected to hold generically for any two-dimensional inviscid array of vortices that has back-to-fore symmetry, and that is ‘close enough’ to the point-vortex model.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aref, H. & Siggia, E. D. 1981 Evolution and breakdown of a vortex street in two dimensions. J. Fluid Mech. 109, 435463.Google Scholar
Arnol'D, V. I.1969 The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid. Usp. Math. Nauk. 24, 225226.Google Scholar
Arnol'D, V. I.1978 Mathematical Methods of Classical Mechanics, p. 230. Springer.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics, pp. 350352. Cambridge University Press.
Christiansen, J. P. & Zabusky, N. J. 1973 Instability, coalescence and fission of finite-area vortex structures. J. Fluid Mech. 61, 219243.Google Scholar
Couder, Y., Basdevant, C. & Thomé, H. 1984 Solitary vortex couples in two-dimensional turbulent wakes. C. R. Acad. Sci. Paris II, 299, 8994.Google Scholar
Domm, U. 1956 Über die Wirbelstraßen von geringster Instabilität. Z. angew. Math. Mech. 30, 367371.Google Scholar
Galin, D. M. 1975 Versal deformation of linear Hamiltonian systems. Trudy Sem. Pet. Vyp. 1, 6374 (in Russian).Google Scholar
Gerrard, J. H. 1966 The three-dimensional structure of the wake of a circular cylinder. J. Fluid Mech. 25, 143164.Google Scholar
Kazuhiro, J. H. & Oshima, Y. 1985 Numerical study of two-dimensional vortex street. In Proc. Intl Symp. Comput. Fluid Dyn., Sept. 1985, Tokyo (ed. K. Oshima), pp. 617627. Japan Soc. Comp. Fluid Dynamics.
Kida, S. 1982 Stabilizing effects of finite core in a Kármán vortex street. J. Fluid Mech. 122, 487504.Google Scholar
Lamb, H. 1945 Hydrodynamics, 156. Dover.
Mackay, R. S. 1986 Stability of equilibria of Hamiltonian systems. In Nonlinear Phenomena and Chaos (ed. S. Sarkar), pp. 254270. Bristol: Adam Hilger.
Mal'Tsev, A. I.1963 Foundations of Linear Algebra, 100108. Freeman.
Marsden, J. E. & Weinstein, A. 1983 Coadjoint orbits, vortices and Clebsh variables for incompressible fluids. Physica 7D, 305323.
Meiron, D. I., Saffman, P. G. & Schatzman, J. C. 1984 Linear two-dimensional stability of inviscid vortex streets of finite-cored vortices. J. Fluid Mech. 147, 187212.Google Scholar
Rosenhead, L. 1929 The Kármán street of vortices in a channel of finite breadth. Phil. Trans. R. Soc. Land. A 208, 275329.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1982a Stability of a vortex street of finite vortices. J. Fluid Mech. 117, 171185.Google Scholar
Saffman, P. G. & Schatzman, J. C. 1982b An inviscid model for the vortex-street wake. J. Fluid Mech. 122, 467486.Google Scholar
Shirer, H. N. & Wells, R. 1983 Mathematical Structure of the Singularities at the Transitions Between Steady States in Hydrodynamic Systems. Lectures Notes in Physics, vol. 185, pp. 145184. Springer.
Taneda, S. 1959 Downstream development of wakes behind cylinders. J. Phys. Soc. Japan 14, 843848.Google Scholar
Van Dyke, M. 1982 An Album of Fluid Motion, pp. 5657. Parabolic.