Published online by Cambridge University Press: 28 March 2006
The velocities, accelerations and drag forces experienced by two equal spheres falling along their line of centres in a viscous fluid were determined for three groups of Reynolds numbers R in the range where it is commonly assumed that Stokes's approximation applies. For all groups, with R ranging between 0·060 and 0·216, both spheres continually acclerated as they fell, and the upper sphere fell faster and accelerated more than the lower one. In contrast to Stimson & Jeffery's (1926) theory, which is based on the Stokes approximation, and to most earlier experimenters, the drag-force coefficients of the upper sphere computed from the experiments were significantly smaller than those for the lower sphere. Oseen's theory for this case agreed with the experiments in some respects, but contrary to it the drag-force coefficient varied with R for the upper sphere as well as the lower sphere.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.