Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T06:33:38.665Z Has data issue: false hasContentIssue false

On the global instability of free disturbances with a time-dependent nonlinear viscous critical layer

Published online by Cambridge University Press:  20 April 2006

J. Gajjar
Affiliation:
NMI Ltd, Stanton Avenue, Teddington TW11 0JJ, U.K.
F. T. Smith
Affiliation:
Mathematics Department, University College London, Gower Street, London WC1E 6BT, U.K.

Abstract

A theoretical study is made of the global nonlinear growth or decay, in space and time, of an unsteady non-neutral disturbance/wavepacket when a time-dependent nonlinear viscous critical layer is present. The basic flow considered is a steady quasiparallel channel flow, boundary layer or liquid-layer flow at high Reynolds number. The unsteadiness with regard to the critical layer shows itself less in the internal dynamics than in the relatively slow movement of the layer across the flow, the temporal and spatial rate of movement discussed being sufficient to affect the nonlinear viscous balance in the layer. This greatly reduces the mean-flow distortions produced. The disturbance amplitude, in contrast, responds nonlinearly on faster time- and space-scales, both inside and outside the critical layer. These slower- and faster-scale properties inside the critical layer and outside, i.e. globally, are coupled together in general. The work addresses first the structure and nonlinear evolution equations for the growing or decaying free disturbance and the critical layer. But preliminary analysis in special cases suggests, among other things, the significant result that previous nonlinear studies based on quasineutral assumptions give unstable subcritical threshold amplitudes, above which increasingly fast disturbance growth takes place globally.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Béland M.1978 J. Atmos. Sci. 35, 18021815.
Benney D. J.1983 Stud. Appl. Maths 69, 177200.
Benney, D. J. & Bergeron R. E.1969 Stud. Appl. Maths 48, 181204.
Benney, D. J. & Maslowe S. A.1975 Stud. Appl. Maths 54, 181205.
Bodonyi R. J., Smith, F. T. & Gajjar J.1983 IMA J. Appl. Maths 30, 119.
Brown, S. N. & Stewartson K.1978 Geophys. Astrophys. Fluid Dyn. 10, 124.
Brown, S. N. & Stewartson K.1980 Geophys. Astrophys. Fluid Dyn. 16, 171.
Cowley S. J.1981 High Reynolds number flows through channels and tubes. Ph.D. thesis, University of Cambridge.
Davis R. E.1969 J. Fluid Mech. 36, 337346.
Dickinson R. E.1970 J. Atmos. Sci. 27, 627633.
Gajjar J.1984 Ph.D. thesis, University of London.
Haberman R.1972 Stud. Appl. Maths 51, 139161.
Haberman R.1976 SIAM J. Math. Anal. 7, 7081.
Hickernell F. J.1984 J. Fluid Mech. 142, 431449.
Reid W. H.1965 In Basic Developments in Fluid Dynamics, vol. 1 (ed. M. Holt). Academic.
Smith F. T.1979 Proc. R. Soc. Lond. A. 368, 573589 (and A 371 (1980), 439–440).
Smith, F. T. & Bodonyi R. J.1982a J. Fluid Mech. 118, 165185.
Smith, F. T. & Bodonyi R. J.1982b Proc. R. Soc. Lond. A 384, 463481.
Smith F. T., Papageorgiou, D. & Elliott, J. W. 1984 J. Fluid Mech. 146. 313330.
Stewartson K.1978 Geophys. Astrophys. Fluid Dyn. 9, 185200.
Stewartson K.1981 IMA J. Appl. Maths 27, 133175.
Stewartson, K. & Stuart J. T.1971 J. Fluid Mech. 48, 529545.
Stuart J. T.1960 J. Fluid Mech. 9, 353370.
Warn, T. & Warn H.1978 Stud. Appl. Maths 59, 3771.
Watson E. J.1960 J. Fluid Mech. 9, 371389.