Article contents
On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars
Published online by Cambridge University Press: 29 March 2006
Abstract
This paper studies several geometric aspects of the Poisson and Gaussian random fields approximating Burgers k−2 and Kolmogorov $k^{-\frac{5}{3}}$ homogeneous turbulence. In particular, simulated sample scalar iso-surfaces (e.g. surfaces of constant temperature or concentration) are exhibited, and their relative degrees of wiggliness are shown to be best characterized by saying that the corresponding fractal dimensions are respectively equal to 3−½ and $3-\frac{1}{3}$.
- Type
- Research Article
- Information
- Copyright
- © 1975 Cambridge University Press
References
Corrsin, S.
1951a
On the spectrum of isotropic temperature fluctuations in isotropic turbulence.
J. Appl. Phys.
22,
469–473.Google Scholar
Feller, W.
1968
An Introduction of Probability Theory and Its Application, vol. 1, 3rd edn.
Wiley.
Gangolli, R.
1967
Lévy's Brownian motion of several parameters.
Ann. Inst. H. Poincaré, B
3,
121–226.Google Scholar
Kármán, Th. Von & Howarth, L.
1938
On the statistical theory of isotropic turbulence.
Proc. Roy. Soc. A
151,
411–478. (Reprinted in Turbulence (ed. S. K. Friedlander & L. Topper). Interscience.)Google Scholar
Kolmogorov, A. N.
1940
Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum.
C. R. (Doklady) Acad. Sci. URSS (N.S.),
26,
115–118.Google Scholar
Kuo, A. Y. S. & Corrsin, S.
1972
Experiments on the geometry of the fine-structure regions in fully turbulent fluid.
J. Fluid Mech.
56,
477–479.Google Scholar
Lévy, P.
1948 Processus Stochastiques et Mouvement Brownien. Gauthier-Villars.
Mckean, H. P.
1963
Brownian motion with a several dimensional time.
Theory Prob. Appl.
8,
357–378.Google Scholar
Mandelbrot, B.
1965
Self-similar error clusters in communications systems and the concept of conditional stationarity.
I.E.E.E. Trans. Comm. Tech. COM
13,
71–90.Google Scholar
Mandelbrot, B.
1967
How long is the coast of Britain? Statistical self-similarity and fractional dimension.
Science,
155,
636–638.Google Scholar
Mandelbrot, B.
1972
Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in intermittent turbulence. In
Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta),
pp.
333–351.
Springer.
Mandelbrot, B.
1974
Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier.
J. Fluid Mech.
62,
331–358.Google Scholar
Mandelbrot, B.
1975a
Stochastic models for the earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands.
Proc. Nat. Acad. Sci. U.S.A.
72 (in press).Google Scholar
Mandelbrot, B.
1975b
Fonctions aléatoires pluri-temporelles: approximation poissonienne du cas brownien et généralisations.
Comptes Rendus, A
280,
1075–1078.Google Scholar
Mandelbrot, B.
1975c
Les Objets Fractals: Forme, Hasard et Dimension.
Paris:
Flammarion. (Revised and much augmented English trans. expected to appear in 1976, tentatively under the title Fractals: Shape, Chance and Dimension.)
Mandelbrot, B.
1975d
Géometrie fractale de la turbulence. Dimension de Hausdorff, dispersion et nature des singularités du mouvement des fluides.
Comptes Rendus, A
281 (in press).Google Scholar
Mandelbrot, B.
1976
Proc. June
1975 Meeting, Orsay. Journées Mathématiques sur la Turbulence.
Springer.
Mandelbrot, B. & Van ness, J. W.
1968
Fractional Brownian motions, fractional noises and applications.
SIAM Rev.
10,
422–437.Google Scholar
Neumann, J. Von
1963
Recent theories of turbulence (a report to ONR). In
Collected Works, vol. 6,
pp.
437–472.
Pergamon.
Perrin, J.
1913
Les Atomes.
Gallimard. (English trans. Atoms (ed. D. L. Hammick). Constable and Norstrand.)
Rogers, C. A.
1970
Hausdorff Measures.
Cambridge University Press.
Scheffer, V.
1975
Géométrie fractale de la turbulence. Equations de Navier-Stokes et dimension de Hausdorff.
Comptes Rendus, A281 (in press).Google Scholar
Yaglom, A. M.
1957
Some classes of random fields in.
N-dimensional space, related to stationary random processes. (trans. R. A. Silverman). Theory Prob. Appl.
2,
273–320.Google Scholar
Yoder, L.
1974
Variation of multiparameter Brownian motion.
Proc. Am. Math. Soc.
46,
302–309.Google Scholar
- 222
- Cited by