Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T16:40:26.877Z Has data issue: false hasContentIssue false

On the generation of a foam film during a topological rearrangement

Published online by Cambridge University Press:  18 December 2014

P. Petit
Affiliation:
Institut Lumière Matière, Université de Lyon, UMR5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France
J. Seiwert
Affiliation:
Institut de Physique de Rennes, UMR 6251 CNRS, Université de Rennes 1, Campus Beaulieu, 35042 Rennes CEDEX, France
I. Cantat
Affiliation:
Institut de Physique de Rennes, UMR 6251 CNRS, Université de Rennes 1, Campus Beaulieu, 35042 Rennes CEDEX, France
A.-L. Biance*
Affiliation:
Institut Lumière Matière, Université de Lyon, UMR5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France
*
Email address for correspondence: [email protected]

Abstract

T1 topological rearrangement, i.e. switching of neighbouring bubbles in a liquid foam, is the elementary process of foam dynamics, and it involves film disappearance and generation. It has been studied extensively as it is crucial in foam rheology or foam collapse. T1 dynamics depends mainly on the surfactants used to generate the foam, and several models taking into account surface viscosity and/or elasticity have been proposed. By performing experiments in a cubic assembly of films, we go a step forward in this global analysis and investigate experimentally the mechanism of formation of the new film. In particular, the flow velocity field is probed by particle tracking and the film thickness is measured by light absorption and interferometric measurements. Two limit behaviours for the film are reported: it may (i) undergo an homogeneous extension, or (ii) resist elongation and remain at rest, new film being created from liquid exchange with connecting meniscus. Both T1 dynamics and film thickness are shown to depend on the competition between these two behaviours. Interestingly, their balance is set by the surfactant solution used, but it is also shown to vary during a single T1 relaxation process.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, D. G. T., Kelly, S., Daly, E. J., Dolan, M. J., Drenckhan, W., Weaire, D. & Hutzler, S. 2008 Taking Plateau into microgravity: the formation of an eightfold vertex in a system of soap films. Microgravity Sci. Technol. 20 (1), 1722.CrossRefGoogle Scholar
Biance, A.-L., Cohen-Addad, S. & Hohler, R. 2009 Topological transition dynamics in a strained bubble cluster. Soft Matter 5, 46724679.CrossRefGoogle Scholar
Biance, A.-L., Delbos, A. & Pitois, O. 2011 How topological rearrangements and liquid fraction control liquid foam stability. Phys. Rev. Lett. 106, 068301.CrossRefGoogle ScholarPubMed
Buzza, D. M. A., Lu, C. Y. D. & Cates, M. E. 1995 Linear shear rheology of incompressible foams. J. Phys. (Paris) 5 (1), 3752.Google Scholar
Cantat, I. 2011 Gibbs elasticity effect in foam shear flows: a non quasi-static 2D numerical simulation. Soft Matter 7 (2), 448455.CrossRefGoogle Scholar
Cantat, I. 2013 Liquid meniscus friction on a wet plate: bubbles, lamellae, and foams. Phys. Fluids 25 (3), 031303.CrossRefGoogle Scholar
Cantat, I., Cohen-Addad, S., Elias, F., Graner, F., Höhler, R., Pitois, O., Rouyer, F. & Saint-Jalmes, A. 2010 Les mousses: structure et dynamique. Belin.Google Scholar
Carrier, V. & Colin, A. 2003 Coalescence in draining foams. Langmuir 19 (11), 45354538.CrossRefGoogle Scholar
Chan, D. Y. C., Klaseboer, E. & Manica, R. 2010 Dynamic interactions between deformable drops in the Hele-Shaw geometry. Soft Matter 6 (8), 18091815.CrossRefGoogle Scholar
Cohen-Addad, S., Hohler, R. & Pitois, O. 2013 Flow in foams and flowing foams. Annu. Rev. Fluid Mech. 45, 241267.CrossRefGoogle Scholar
Cormier, S. L., McGraw, J. D., Salez, T., Raphael, E. & Dalnoki-Veress, K. 2012 Beyond Tanner’s law: crossover between spreading regimes of a viscous droplet on an identical film. Phys. Rev. Lett. 109 (15), 154501.CrossRefGoogle Scholar
Durand, M. & Stone, H. A. 2006 Relaxation time of the topological T1 process in a two-dimensional foam. Phys. Rev. Lett. 97, 226101.CrossRefGoogle Scholar
Geraud, B., Bocquet, L. & Barentin, C. 2013 Confined flows of a polymer microgel. Eur. Phys. J. E 36 (3), 30.CrossRefGoogle ScholarPubMed
Golemanov, K., Denkov, N. D., Tcholakova, S., Vethamuthu, M. & Lips, A. 2008 Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir 24 (18), 99569961.CrossRefGoogle ScholarPubMed
Grassia, P., Oguey, C. & Satomi, R. 2012 Relaxation of the topological T1 process in a two-dimensional foam. Eur. Phys. J. E 35 (7), 64.CrossRefGoogle Scholar
Hutzler, S., Weaire, D., Cox, S. J., van der Net, A. & Janiaud, E. 2007 Pre-empting plateau: the nature of topological transitions in foam. Europhys. Lett. 77 (2), 28002.CrossRefGoogle Scholar
Kondic, L. 2003 Instabilities in gravity driven flow of thin fluid films. SIAM Rev. 45 (1), 95115.CrossRefGoogle Scholar
Lastakowski, H., Boyer, F., Biance, A.-L., Pirat, C. & Ybert, C. 2014 Bridging local to global dynamics of drop impact onto solid substrates. J. Fluid Mech. 747, 103118.CrossRefGoogle Scholar
Le Merrer, M., Cohen-Addad, S. & Hohler, R. 2012 Bubble rearrangement duration in foams near the jamming point. Phys. Rev. Lett. 108 (18), 188301.CrossRefGoogle ScholarPubMed
Le Merrer, M., Cohen-Addad, S. & Hohler, R. 2013 Duration of bubble rearrangements in a coarsening foam probed by time-resolved diffusing-wave spectroscopy: impact of interfacial rigidity. Phys. Rev. E 88 (2), 022303.CrossRefGoogle Scholar
Liu, X. N. & Duncan, J. H. 2003 The effects of surfactants on spilling breaking waves. Nature 421 (6922), 520523.CrossRefGoogle ScholarPubMed
Martens, K., Bocquet, L. & Barrat, J. L. 2012 Spontaneous formation of permanent shear bands in a mesoscopic model of flowing disordered matter. Soft Matter 8 (15), 41974205.CrossRefGoogle Scholar
Mysels, K. J. & Frankel, S. P. 1978 Effect of a surface-induced gradual viscosity increase upon thickness of entrained liquid-films and flow in narrow channels. J. Colloid Interface Sci. 66 (1), 166172.CrossRefGoogle Scholar
Seiwert, J., Monloubou, M., Dollet, B. & Cantat, I. 2013 Extension of a suspended soap film: a homogeneous dilatation followed by new film extraction. Phys. Rev. Lett. 111 (9), 094501.CrossRefGoogle ScholarPubMed
Tcholakova, S., Denkov, N. D., Golemanov, K., Ananthapadmanabhan, K. P. & Lips, A. 2008 Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions. Phys. Rev. E 78 (1), 011405.CrossRefGoogle ScholarPubMed
Weaire, D., Vaz, M. F., Teixeira, P. I. C. & Fortes, M. A. 2007 Instabilities in liquid foams. Soft Matter 3 (1), 4757.CrossRefGoogle Scholar