Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T10:02:49.397Z Has data issue: false hasContentIssue false

On the formation of streamwise vortices by plasma vortex generators

Published online by Cambridge University Press:  23 September 2013

Timothy N. Jukes
Affiliation:
Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
Kwing-So Choi*
Affiliation:
Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The streamwise vortices generated by dielectric-barrier-discharge plasma actuators in the laminar boundary layer were investigated using particle image velocimetry to understand the vortex-formation mechanisms. The plasma vortex generator was oriented along the primary flow direction to produce a body force in the spanwise direction. This created a spanwise-directed wall jet which interacted with the oncoming boundary layer to form a coherent streamwise vortex. It was found that the streamwise vortices were formed by the twisting and folding of the spanwise vorticity in the oncoming boundary layer into the outer shear layer of the spanwise wall jet, which added its own vorticity to increase the circulation along the actuator length. This is similar to the delta-shaped, vane-type vortex generator, except that the circulation was enhanced by the addition of the vorticity in the plasma jet. It was also observed that the plasma vortex was formed close to the wall with an enhanced wall-ward entrainment, which created strong downwash above the actuator.

Type
Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .
Copyright
©2013 Cambridge University Press.

References

Abe, T., Takizawa, Y., Sato, S. & Kimura, N. 2007 A parametric experimental study for momentum transfer by plasma actuator. In 45th AIAA Aerospace Sciences Meeting, AIAA Paper 2007–187. American Institute of Aeronautics and Astronautics.Google Scholar
Angele, K. & Grewe, F. 2007 Instantaneous behaviour of streamwise vortices for turbulent boundary layer separation control. Trans. ASME: J. Fluids Engng 129 (2), 226235.Google Scholar
Balcon, N., Benard, N. & Moreau, E. 2009 Formation process of the electric wind produced by a plasma actuator. IEEE Trans. Dielec. Elec. Insul. 16 (2), 463469.Google Scholar
Benard, N., Balcon, N. & Moreau, E. 2008a Electric wind produced by a surface dielectric barrier discharge operating in air at different pressure: aeronautical control insights. J. Phys. D: Appl. Phys. 41, 042002.Google Scholar
Benard, N., Jolibois, J., Touchard, G. & Moreau, E. 2008b A directional plasma-jet device generated by double DBD actuators: an active vortex generator for aerodynamic flow control. In 4th AIAA Flow Control Conference, AIAA Paper 2008–3763. American Institute of Aeronautics and Astronautics.Google Scholar
Benard, N. & Moreau, E. 2012 Role of the electric waveform supplying a dielectric barrier discharge plasma actuator. Appl. Phys. Lett. 100, 193503.CrossRefGoogle Scholar
Benard, N., Moreau, E. & Balcon, N. 2009 Electric wind produced by a surface dielectric barrier discharge operating over a wide range of relative humidity. In 47th AIAA Aerospace Sciences Meeting, AIAA Paper 2009–488. American Institute of Aeronautics and Astronautics.Google Scholar
Boeuf, J. P., Lagmich, Y., Unfer, Th., Callegari, Th. & Pitchford, L. C. 2007 Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J. Appl. Phys. D: Appl. Phys. 40, 652662.Google Scholar
Bradshaw, P. 1987 Turbulent secondary flows. Annu. Rev. Fluid Mech. 19, 5374.CrossRefGoogle Scholar
Bushnell, D. 1992 Longitudinal vortex control – techniques and applications (the 32nd Lanchester lecture). Aeronaut. J. 96, 293312.Google Scholar
Cantwell, B. J. 1986 Viscous starting jets. J. Fluid Mech. 173, 159189.Google Scholar
Caruana, D. 2010 Plasmas for aerodynamic control. Plasma Phys. Control. Fusion 52, 124045.CrossRefGoogle Scholar
Chan, S., Zhang, X. & Gabriel, S. 2007 Attenuation of low-speed flow-induced cavity tones using plasma actuators. AIAA J. 45 (7), 15251538.Google Scholar
Choi, K.-S., Jukes, T. N. & Whalley, R. D. 2011 Turbulent boundary-layer control with plasma actuators. Phil. Trans. R. Soc. A 369, 14431458.Google Scholar
Corke, T., Bowles, P., He, C. & Matlis, E. 2011 Sensing and control of flow separation using plasma actuators. Phil. Trans. R. Soc. A 369, 14591475.CrossRefGoogle ScholarPubMed
Corke, T., He, C. & Patel, M. 2004 Plasma flaps and plasma slats: an application of weakly-ionized plasma actuators. In 2nd AIAA Flow Control Conference, AIAA Paper 2004–2127. American Institute of Aeronautics and Astronautics.Google Scholar
Corke, T., Post, M. & Orlov, D. 2007 SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Prog. Aerospace Sci. 43, 193217.Google Scholar
Corke, T., Post, M. & Orlov, D. 2009 Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modelling and applications. Exp. Fluids 46, 126.Google Scholar
Cortelezzi, L. & Karagozian, A. 2001 On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347373.Google Scholar
Enloe, C., McHarg, M., Font, G. & McLaughlin, T. 2009 Plasma-induced force and self-induced drag in the dielectric barrier discharge aerodynamic plasma actuator. In 47th AIAA Aerospace Sciences Meeting, AIAA Paper 2009–1622. American Institute of Aeronautics and Astronautics.Google Scholar
Enloe, C. L., McLaughlin, T. E., VanDyken, R. D., Kachner, K. D., Jumper, E. J. & Corke, T. C. 2004a Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology. AIAA J. 42 (3), 589594.Google Scholar
Enloe, C. L., McLaughlin, T. E., VanDyken, R. D., Kachner, K. D., Jumper, E. J., Corke, T. C., Post, M. & Hadded, O. 2004b Mechanisms and responses of a single dielectric barrier plasma actuator: geometrics effects. AIAA J. 42 (3), 595604.Google Scholar
Feng, L., Jukes, T., Choi, K.-S. & Wang, J. J. 2012 Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a gurney flap. Exp. Fluids 52, 15331546.Google Scholar
Forte, M., Jolibois, J., Pons, J., Moreau, E., Touchard, G. & Cazalens, M. 2007 Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp. Fluids 43, 917928.Google Scholar
Gibalov, V. & Pietsch, G. 2000 The development of dielectric barrier discharges in gas gaps and on surfaces. J. Phys. D: Appl. Phys. 33, 26182636.Google Scholar
Glauert, M. B. 1956 The wall jet. J. Fluid Mech. 1, 625643.Google Scholar
Godard, G. & Stanislas, M. 2006 Control of a decelerating boundary layer. Part 1: optimization of passive vortex generators. Aerosp. Sci. Technol. 10, 181191.Google Scholar
Greenblatt, D., Goksel, B., Rechenberg, I., Schule, C. Y., Romann, D. & Paschereit, C. O. 2008 Dielectric barrier discharge flow control at very low flight reynolds numbers. AIAA J. 46 (6), 15281541.Google Scholar
Greenblatt, D., Schneider, T. & Schule, C. Y. 2012 Mechanism of flow separation control using plasma actuation. Phys. Fluids 24, 077102.Google Scholar
Grundmann, S., Sayles, E. & Eaton, J. 2011 Sensitivity of an asymmetric 3D diffuser to plasma-actuator induced inlet condition perturbations. Exp. Fluids 50, 217231.Google Scholar
Grundmann, S., Sayles, E., Elkins, C. & Eaton, J. 2012 Sensitivity of an asymmetric 3D diffuser to vortex-generator induced inlet condition perturbations. Exp. Fluids 52, 1121.CrossRefGoogle Scholar
Grundmann, S. & Tropea, C. 2008 Active cancellation of artificially introduced tollmien-schlichting waves using plasma actuators. Exp. Fluids 44, 795806.Google Scholar
Hanson, R., Lavoie, P., Nagiub, A. & Morrison, J. 2010 Transient growth instability cancelation by a plasma actuator array. Exp. Fluids 49, 13391348.Google Scholar
He, C., Corke, T. & Patel, M. 2007 Numerical and experimental analysis of plasma flow control over a hump model. In 45th AIAA Aerospace Sciences Meeting, AIAA Paper 2007–935. American Institute of Aeronautics and Astronautics.Google Scholar
He, C., Corke, T. C. & Patel, M. P. 2009 Plasma flaps and slats: an application of weakly ionized plasma actuators. J. Aircraft 46 (3), 864873.Google Scholar
Huang, J., Corke, T. C. & Thomas, F. O. 2006a Plasma actuators for separation control of low-pressure turbine blades. AIAA J. 44 (1), 5157.Google Scholar
Huang, J., Corke, T. C. & Thomas, F. O. 2006b Unsteady plasma actuators for separation control of low-pressure turbine blades. AIAA J. 44 (7), 14771487.Google Scholar
Huang, X. & Zhang, X. 2008 Streamwise and spanwise plasma actuators for flow-induced cavity noise control. Phys. Fluids 20, 037101.CrossRefGoogle Scholar
Im, S., Do, H. & Cappelli, M. 2010 Dielectric barrier discharge control of a turbulent boundary layer in a supersonic flow. Appl. Phys. Lett. 97, 041503.Google Scholar
Jeong, J. & Hussain, F. 1995 On the indentification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Johnston, J. P. 1999 Pitched and skewed vortex generator jets for control of turbulent boundary layer separation: a review. In 3rd ASME/JSME Joint Fluids Engineering Conference, FEDSM99–6917.Google Scholar
Johnston, J. P. & Nishi, M. 1990 Vortex generator jets – means for flow separation control. AIAA J. 28 (6), 989994.Google Scholar
Jukes, T. & Choi, K.-S. 2009a Control of unsteady flow separation over a circular cylinder using dielectric-barrier-discharge surface plasma. Phys. Fluids 21, 094106.Google Scholar
Jukes, T. & Choi, K.-S. 2009b Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma. Phys. Fluids 21, 084103.Google Scholar
Jukes, T. & Choi, K.-S. 2009c Long lasting modifications to vortex shedding using a short plasma excitation. Phys. Rev. Lett. 102, 254501.Google Scholar
Jukes, T. & Choi, K.-S. 2012 Dielectric-barrier-discharge vortex generators: characterisation and optimisation for flow separation control. Exp. Fluids 52, 329345.Google Scholar
Jukes, T., Choi, K.-S., Johnson, G. & Scott, S 2006a Characterisation of surface plasma-induced wall flows through velocity and temperature measurement. AIAA J. 44 (4), 764771.Google Scholar
Jukes, T., Choi, K.-S., Scott, S. & Johnson, G. 2006b Turbulent drag reduction by surface plasma through spanwise flow oscillation. In 3rd AIAA Flow Control Conference, AIAA Paper 2006–3693. American Institute of Aeronautics and Astronautics.Google Scholar
Jukes, T., Segawa, T. & Furutani, H. 2013 Flow control on a NACA 4418 using dielectric-barrier-discharge vortex generators. AIAA J. 51 (2), 452464.Google Scholar
Kelso, R., Lim, T. & Perry, A. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.Google Scholar
Khan, Z. & Johnston, J. 2000 On vortex generator jets. Intl J. Heat Fluid Flows 21, 506511.Google Scholar
Kogelschatz, U., Eliasson, B. & Egli, W. 1997 Dielectric-barrier discharges. Principle and applications. J. Physique IV 7 (C4), 4766.Google Scholar
Kozlov, A. & Thomas, F. 2011 Bluff-body flow control via two types of dielectric barrier discharge plasma actuation. AIAA J. 49 (9), 19191931.Google Scholar
Kriegseis, J., Schwarz, C., Duchmann, A., Grundmann, S. & Tropea, C. 2012 PIV-based estimation of DBD plasma-actuator force terms. In 50th AIAA Aerospace Sciences Meeting, AIAA Paper 2012–0411. American Institute of Aeronautics and Astronautics.Google Scholar
Lin, J. 2002 Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerospace Sci. 38, 389420.Google Scholar
Little, J., Nishinara, M., Adamovich, I. & Samimy, M. 2010 High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator. Exp. Fluids 48, 521537.Google Scholar
Lögdberg, O., Angele, K. & Alfredsson, H. 2010 On the robustness of separation control by streamwise vortices. Eur. J. Mech. (B/Fluids) 29, 917.Google Scholar
Mehta, R. & Bradshaw, P. 1988 Longitudinal vortices imbedded in turbulent boundary layers. Part 2. Vortex pair with ‘common flow’ upwards. J. Fluid Mech. 188, 529546.Google Scholar
Moreau, E. 2007 Airflow control by non-thermal plasma actuators. J. Phys. D: Appl. Phys. 40 (3), 605636.Google Scholar
Okita, Y., Jukes, T., Choi, K.-S. & Nakamura, K. 2008 Flow reattachment over an airfoil using surface plasma actuator. In 4th AIAA Flow Control Conference, AIAA Paper 2008–4203. American Institute of Aeronautics and Astronautics.Google Scholar
Patel, M., Vasudevan, S., Nelson, R. & Corke, T. 2008 Plasma aerodynamic control effectors for improved wind turbine performance. Tech. Rep. Phase I SBIR Final Report.Google Scholar
Pauley, W. & Eaton, J. 1988 Experiment study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA J. 26 (7), 816823.Google Scholar
Post, M. L. & Corke, T. C. 2006 Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil. AIAA J. 44 (12), 31253135.Google Scholar
Roth, J., Sherman, D. & Wilkinson, S. 1998 Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In 36th AIAA Aerospace Sciences Meeting, AIAA Paper 98–0328. American Institute of Aeronautics and Astronautics.Google Scholar
Roth, J., Sherman, D. & Wilkinson, S. 2000 Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J. 38 (7), 11661172.Google Scholar
Sattari, P, Rival, D., Martinuzzi, R. & Tropea, C. 2012 Growth and separation of a start-up vortex from a two-dimensional shear layer. Phys. Fluids 24, 107102.Google Scholar
Schatzman, D. & Thomas, F. 2010 Turbulent boundary-layer separation control with single dielectric barrier discharge plasma actuators. AIAA J. 48 (8), 16201634.Google Scholar
Schlichting, H. 1979 Boundary Layer Theory. McGraw-Hill.Google Scholar
Schubauer, G. & Spangenberg, W. 1960 Forced mixing in boundary layers. J. Fluid Mech. 8, 1032.Google Scholar
Segawa, T., Furutani, H., Yoshida, H., Jukes, T. & Choi, K.-S. 2007 Wall normal jet under elevated temperatures produced by surface plasma actuator. In 45th AIAA Aerospace Sciences Meeting, AIAA Paper 2007–784. American Institute of Aeronautics and Astronautics.Google Scholar
Shebaka, I., Mehta, R. & Bradshaw, P. 1985 Longitudinal vortices imbedded in turbulent boundary layers. Part 1. Single vortex. J. Fluid Mech. 155, 3757.CrossRefGoogle Scholar
Stephen, E., Campbell, A., Nygaard, J., Selby, M., Hennig, C. & McLaughlin, T. 2011 Assessment of a corner plasma actuator for flow control using periodic jets. In 29th AIAA Applied Aerodynamics Conference, AIAA Paper 2011–3513. American Institute of Aeronautics and Astronautics.Google Scholar
Taylor, H. 1947 The elimination of diffuser separation by vortex generators. Report no. r-4012-3. United Aircraft Corporation.Google Scholar
Tetervin, N. 1948 Laminar flow of a slightly viscous incompressible fluid that issues from a slit and passes over a flat plate. TN 1644. NACA.Google Scholar
Thomas, F., Kozlov, A. & Corke, T. 2008 Plasma actuators for cylinder flow control and noise reduction. AIAA J. 46 (8), 19211931.Google Scholar
Versailles, P., Gingras-Gosselin, V. & Vo, H. D. 2010 Impact of pressure and temperature on the performance of plasma actuators. AIAA J. 48 (4), 859863.Google Scholar
Wang, J. J., Choi, K.-S., Feng, L., Jukes, T. & Whalley, R. 2013 Recent developments in DBD plasma flow control. Prog. Aerospace Sci. 62, 5278.Google Scholar
Westerweel, J. 1997 Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 8, 13791392.CrossRefGoogle Scholar
Whalley, R. & Choi, K.-S. 2012 The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma. J. Fluid Mech. 703, 192203.CrossRefGoogle Scholar
Wicks, M., Thomas, F., Schatzman, D., Bowles, P., Corke, T., Patel, M. & A, Cain 2012 A parametric investigation of plasma streamwise vortex generator performance. In 50th AIAA Aerospace Sciences Meeting, AIAA Paper 2012–0824. American Institute of Aeronautics and Astronautics.Google Scholar
Wilkinson, S. 2003 Oscillating plasma for turbulent boundary layer drag reduction. In 41st AIAA Aerospace Sciences Meeting, AIAA Paper 2003–1023. American Institute of Aeronautics and Astronautics.Google Scholar
Yao, C., Lin, J. & Allen, B. 2002 Flowfield measurement of device-induced embedded streamwise vortex on a flat plate. In 1st AIAA Flow Control Conference, AIAA Paper 2002–3162. American Institute of Aeronautics and Astronautics.Google Scholar
Zhang, X. 2003 The evolution of co-rotating vortices in a canonical boundary layer with inclined jets. Phys. Fluids 15, 36933702.Google Scholar