Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T17:03:48.632Z Has data issue: false hasContentIssue false

On the excitation of edge waves on beaches

Published online by Cambridge University Press:  11 April 2006

A. A. Minzoni
Affiliation:
Applied Mathematics, California Institute of Technology, Pasadena
G. B. Whitham
Affiliation:
Applied Mathematics, California Institute of Technology, Pasadena

Abstract

The excitation of standing edge waves of frequency ½ω by a normally incident wave train of frequency ω has been discussed previously (Guza & Davis 1974; Guza & Inman 1975; Guza & Bowen 1976) on the basis of shallow-water theory. Here the problem is formulated in the full water-wave theory without making the shallow-water approximation and solved for beach angles β = π/2N, where N is an integer. The work confirms the shallow-water results in the limit N [Gt ] 1, shows the effect of larger beach angles and allows a more complete discussion of some aspects of the problem.

Type
Research Article
Copyright
© 1977 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. 1965 Handbook of Mathematical Functions. Dover.
Courant, R. & Hilbert, D. 1953 Methods of Mathematical Physics, vol. 1. Interscience.
Friedrichs, K. O. 1948 Comm. Pure Appl. Math. 1, 109134.
Guza, R. T. & Bowen, A. J. 1975 J. Geophys. Res. 80, 45294534.
Guza, R. T. & Bowen, A. J. 1976 J. Mar. Res. 34, 269293.
Guza, R. T. & Davis, R. E. 1974 J. Geophys. Res. 79, 12851291.
Guza, R. T. & Inman, D. 1975 J. Geophys. Res. 80, 29973011.
Hanson, E. T. 1926 Proc. Roy. Soc. A 111, 491529.
Minzoni, A. A. 1976 J. Fluid Mech. 74, 369375.
Stoker, J. J. 1957 Water Waves. Interscience.
Whitham, G. B. 1976 J. Fluid Mech. 74, 353368.