Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T21:21:27.727Z Has data issue: false hasContentIssue false

On the effect of adverse pressure gradients on wall-pressure statistics in a controlled-diffusion aerofoil turbulent boundary layer

Published online by Cambridge University Press:  31 March 2023

A. Caiazzo*
Affiliation:
Department of Mechanical Engineering, University of Sherbrooke, Sherbrooke J1K2R1, QC, Canada
S. Pargal
Affiliation:
Department of Mechanical Engineering, University of Sherbrooke, Sherbrooke J1K2R1, QC, Canada Department of Mechanical Engineering, Michigan State University, MI 48824, USA
H. Wu
Affiliation:
Department of Plasma Research, General Fusion, Burnaby, BC V3N 4T5, Canada
M. Sanjosé
Affiliation:
Department of Mechanical Engineering, École de Technologie Supérieure, Montréal H3C1K3, QC, Canada
J. Yuan
Affiliation:
Department of Mechanical Engineering, Michigan State University, MI 48824, USA
S. Moreau
Affiliation:
Department of Mechanical Engineering, University of Sherbrooke, Sherbrooke J1K2R1, QC, Canada
*
Email address for correspondence: [email protected]

Abstract

Wall-pressure and velocity statistics in the turbulent boundary layer (TBL) on a cambered controlled-diffusion aerofoil at $8^{\circ }$ incidence, a Mach number of 0.25 and a chord-based Reynolds number ${Re}_c=1.5\times 10^{5}$ are analysed at four locations on the suction side with zero and adverse pressure gradients (ZPG and APG), characterised by increasing Reynolds numbers based on momentum thickness, ${Re}_{\theta }=319$, 390, 877 and $1036$. The strong APG yields a highly non-equilibrium TBL at the trailing edge that significantly affects the turbulent flow statistics. Different normalisations of the full wall-pressure statistics involved in trailing-edge noise are analysed for the first time in such strong APG with convex curvature, and compared with available experimental and numerical data. Good overall agreement is found in the ZPG region, and most results obtained in previous APG TBL can be extended to the present highly non-equilibrium case. The presence of strong APG augments the intensity of wall-pressure fluctuations noticeably at low frequencies, shortens the streamwise and broadens the spanwise coherence of wall-pressure fluctuations in both time and space, and significantly reduces the convection velocity. The wall-pressure power spectral density are found to scale with the displacement thickness, the Zaragola–Smits velocity and the root-mean-squared pressure, the latter possibly being replaced by the local maximum Reynolds shear stress. The other two key parameters to trailing-edge noise modelling, the spanwise coherence length and the convection velocity, rather scale with displacement thickness and friction velocity, respectively.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, H. 2017 Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent separation bubble. J. Fluid Mech. 833, 563598.Google Scholar
Abe, H., Matsuo, Y. & Kawamura, H. 2005 A DNS study of Reynolds-number dependence on pressure fluctuations in a turbulent channel flow. In 4th International Symposium on Turbulence and Shear Flow Phenomena, vol. 1, pp. 189–194.Google Scholar
Amiet, R.K. 1976 Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47 (3), 387393.CrossRefGoogle Scholar
Arguillat, B., Ricot, D., Bailly, C. & Robert, G. 2010 Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations. J. Acoust. Soc. Am. 128 (5), 16471655.CrossRefGoogle ScholarPubMed
Blake, W.K. 1970 Turbulent boundary-layer wall-pressure fluctuations on smooth and rough walls. J. Fluid Mech. 44, 637660.CrossRefGoogle Scholar
Blake, W.K. 1986 Mechanics of Flow-Induced Sound and Vibration. Vol. I and II. Academic Press Inc.Google Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near-equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.CrossRefGoogle Scholar
Bradshaw, P. 1967 ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J. Fluid Mech. 30, 241258.CrossRefGoogle Scholar
Brooks, T.F. & Hodgson, T.H. 1981 Trailing edge noise prediction from measured surface pressures. J. Sound Vib. 78 (1), 69117.CrossRefGoogle Scholar
Bull, M.K. 1967 Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28, 719754.CrossRefGoogle Scholar
Bull, M.K. 1996 Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research. J. Sound Vib. 190, 299315.CrossRefGoogle Scholar
Burton, T.E. 1973 Wall pressure fluctuations at smooth and rough surfaces under turbulent boundary layers with favorable and adverse pressure gradients. Tech. Rep. Report ONR AD Massachusetts, Institute of Technology.CrossRefGoogle Scholar
Caiazzo, A., Alujević, N., Pluymers, B. & Desmet, W. 2018 Active control of turbulent boundary layer-induced sound transmission through the cavity-backed double panels. J. Sound Vib. 422, 161188.CrossRefGoogle Scholar
Caiazzo, A., D'Amico, R. & Desmet, W. 2016 A generalized Corcos model for modelling turbulent boundary layer wall pressure fluctuations. J. Sound Vib. 372, 192210.Google Scholar
Carpenter, M.H., Nordström, J. & Gottlieb, D. 1999 A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys. 148, 341365.Google Scholar
Choi, H. & Moin, P. 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids A 2, 14501460.CrossRefGoogle Scholar
Christophe, J., Moreau, S., Hamman, C.W., Witteveen, J.A.S. & Iaccarino, G. 2015 Uncertainty quantification for the trailing-edge noise of a controlled-diffusion airfoil. AIAA J. 53 (1), 4254.CrossRefGoogle Scholar
Ciappi, E., De Rosa, S., Franco, F., Guyader, J.-L., Hambric, S.A., Leung, R.C.K. & Hanford, A.D. 2019 Flinovia—Flow Induced Noise and Vibration Issues and Aspects-II: A Focus on Measurement, Modeling, Simulation and Reproduction of the Flow Excitation and Flow Induced Response. Springer Nature.CrossRefGoogle Scholar
Cipolla, K. & Keith, W. 2000 Effects of pressure gradients on turbulent boundary layer wave number frequency spectra. AIAA J. 38, 18321836.CrossRefGoogle Scholar
Cohen, E. & Gloerfelt, X. 2018 Influence of pressure gradients on wall pressure beneath a turbulent boundary layer. J. Fluid Mech. 838, 715758.CrossRefGoogle Scholar
Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated isotropic turbulence. J. Fluid Mech. 48, 273337.CrossRefGoogle Scholar
Corcos, G.M. 1962 Pressure fluctuations in shear flows. IER reports, vol. 183. Univ. Calif. Inst. Eng. Res.Google Scholar
Corcos, G.M. 1964 The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech. 18, 353378.CrossRefGoogle Scholar
Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. Math. Phys. Engng Sci. A231, 505514.Google Scholar
Del Álamo, J.C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor's approximation. J. Fluid Mech. 640, 526.CrossRefGoogle Scholar
Dominique, J., Van den Berghe, J., Schram, C. & Mendez, M.A. 2022 Artificial neural networks modeling of wall pressure spectra beneath turbulent boundary layers. Phys. Fluids 34 (3), 035119.Google Scholar
Eckelmann, H. 1988 A review of knowledge on pressure fluctuations. In Near-Wall Turbulence: 1988 Zoran Zaric Memorial Conference (ed. S.J. Kline and N.H. Afgan), pp. 328–347. Hemisphere.Google Scholar
Farabee, T.M. & Casarella, M.J. 1991 Spectral features of wall pressure fluctuations beneath turbulent boundary layers. Phys. Fluids A 3, 24102420.CrossRefGoogle Scholar
Ffowcs-Williams, J.E. & Hall, L.H. 1970 Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half-plane. J. Fluid Mech. 40, 657670.CrossRefGoogle Scholar
Goldschmidt, V.W., Young, M.F. & Ott, E.S. 1981 Turbulent convective velocities (broadband and wavenumber dependent) in a plane jet. J. Fluid Mech. 105, 327345.CrossRefGoogle Scholar
Goody, M. 2004 Empirical spectral model of surface pressure fluctuations. AIAA J. 42 (9), 17881794.CrossRefGoogle Scholar
Graham, W.R. 1996 Boundary layer induced noise in aircraft, part I: the flat plate model. J. Sound Vib. 192 (1), 101120.CrossRefGoogle Scholar
Graham, W.R. 1997 A comparison of models for the wavenumber–frequency spectrum of turbulent boundary layer pressures. J. Sound Vib. 206, 541565.CrossRefGoogle Scholar
Grasso, G., Jaiswal, P., Wu, H., Moreau, S. & Roger, M. 2019 Analytical models of the wall-pressure spectrum under a turbulent boundary layer with adverse pressure gradient. J. Fluid Mech. 877, 10071062.CrossRefGoogle Scholar
Gravante, S.P., Naguib, A.M., Wark, C.E. & Nagib, H.M. 1998 Characterization of the pressure fluctuations under a fully developed turbulent boundary layer. AIAA J. 36 (10), 18081816.CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 General method for determining the boundary layer thickness in nonequilibrium flows. Phys. Rev. Fluids 6, 024608.CrossRefGoogle Scholar
Howe, M.S. 1978 A review of the theory of trailing edge noise. J. Sound Vib. 61 (3), 437465.CrossRefGoogle Scholar
Hu, N. 2021 Coherence of wall pressure fluctuations in zero and adverse pressure gradients. J. Sound Vib. 511, 116316.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Clark, A.R. 1981 Measurements of wavenumber-celerity spectrum in plane and axisymmetric jets. AIAA J. 19 (1), 5155.CrossRefGoogle Scholar
Hwang, Y.F., Bonness, W.K. & Hambric, S.A. 2009 Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319 (1–2), 199217.CrossRefGoogle Scholar
Jaiswal, P. 2020 Experimental investigation of airfoil self-noise. PhD thesis, Université de Sherbrooke.Google Scholar
Jaiswal, P., Moreau, S., Avallone, F., Ragni, D. & Pröbsting, S. 2020 On the use of two-point velocity correlation in wall-pressure models for turbulent flow past a trailing edge under adverse pressure gradient. Phys. Fluids 32 (10), 105105.CrossRefGoogle Scholar
Jones, L.E., Sandberg, R.D. & Sandham, N.D. 2008 Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175207.CrossRefGoogle Scholar
von Kármán, T.H. 1931 NACA Technical memorandum, vol. 611. National Advisory Committee for Aeronautics.Google Scholar
Keith, W.L., Hurdis, D.A. & Abraham, B.M. 1992 A comparison of turbulent boundary layer wall-pressure spectra. Trans. ASME J. Fluids Engng 114, 338347.CrossRefGoogle Scholar
Kennedy, C.A., Carpenter, M.H. & Lewis, R.M. 1999 Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Maths 35, 177219.CrossRefGoogle Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.CrossRefGoogle Scholar
Kitsios, V., Atkinson, C., Sillero, J.A., Borrell, G., Gungor, A.G., Jiménez, J. & Soria, J. 2016 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer. Intl J. Heat Fluid Flow 61, 129136.CrossRefGoogle Scholar
Lee, J.-H. & Sung, H.J. 2008 Effects of an adverse pressure gradient on a turbulent boundary layer. Intl J. Heat Fluid Flow 29 (3), 568578.CrossRefGoogle Scholar
Lee, S., Ayton, L., Bertagnolio, F., Moreau, S., Chong, T.P. & Joseph, P. 2021 Turbulent boundary layer trailing-edge noise: theory, computation, experiment, and application. Prog. Aerosp. Sci. 126, 100737.CrossRefGoogle Scholar
Maciel, Y., Rossignol, K.-S. & Lemay, J. 2006 Self-similarity in the outer region of adverse-pressure-gradient turbulent boundary layers. AIAA J. 44 (11), 24502464.CrossRefGoogle Scholar
Mellor, G.L. & Gibson, D.M. 1966 Equilibrium turbulent boundary layers. J. Fluid Mech. 24 (2), 225253.CrossRefGoogle Scholar
Messiter, A.F. 1970 Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Maths 18 (1), 241257.Google Scholar
Moin, P. 2009 Revisiting Taylor's hypothesis. J. Fluid Mech. 640, 14.CrossRefGoogle Scholar
Monkewitz, P.A., Chauhan, K.A. & Nagib, H.M. 2007 Self-consistent high-Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys. Fluids 19 (11), 115101.CrossRefGoogle Scholar
Monty, J.P., Harun, Z. & Marusic, I. 2011 A parametric study of adverse pressure gradient turbulent boundary layers. Intl J. Heat Fluid Flow 32 (3), 575585.CrossRefGoogle Scholar
Moreau, S. 2016 CD-day. In Symposium on the CD airfoil. Lyon, France, https://www.researchgate.net/publication/304582435_CD-day_S-Moreau.Google Scholar
Moreau, S., Henner, M., Iaccarino, G., Wang, M. & Roger, M. 2003 Analysis of flow conditions in freejet experiments for studying airfoil self-noise. AIAA J. 41 (10), 18951905.CrossRefGoogle Scholar
Moreau, S. & Roger, M. 2005 Effect of airfoil aerodynamic loading on trailing edge noise sources. AIAA J. 43 (1), 4152.CrossRefGoogle Scholar
Moreau, S. & Roger, M. 2009 Back-scattering correction and further extensions of Amiet's trailing-edge noise model. Part II: application. J. Sound Vib. 323 (1–2), 397425.CrossRefGoogle Scholar
Moreau, S., Sanjosé, M., Pérot, F. & Kim, M.-S. 2011 Direct self-noise simulation of the installed controlled diffusion airfoil. In 17th AIAA/CEAS Aeroacoustics Conference. AIAA.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377 (3), 347373.CrossRefGoogle Scholar
Nagib, H.M. & Chauhan, K.A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20 (10), 101518.CrossRefGoogle Scholar
Neal, D.R. 2010 The effects of rotation on the flow field over a controlled-diffusion airfoil. PhD thesis, Michigan State University.Google Scholar
Nickels, T.B. 2004 Inner scaling for wall-bounded flows subject to large pressure gradients. J. Fluid Mech. 521, 217239.CrossRefGoogle Scholar
Padois, T., Laffay, P., Idier, A. & Moreau, S. 2015 Detailed experimental investigation of the aeroacoustic field around a controlled-diffusion airfoil. In 21st AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Palumbo, D. 2012 Determining correlation and coherence lengths in turbulent boundary layer flight data. J. Sound Vib. 331 (16), 37213737.CrossRefGoogle Scholar
Panton, R.L. & Linebarger, J.H. 1974 Wall pressure spectra calculations for equilibrium boundary layers. J. Fluid Mech. 65 (2), 261287.CrossRefGoogle Scholar
Pargal, S., Wu, H., Yuan, J. & Moreau, S. 2022 Adverse-pressure-gradient turbulent boundary layer on convex wall. Phys. Fluids 34 (3), 035107.CrossRefGoogle Scholar
Roger, M. & Moreau, S. 2005 Back-scattering correction and further extensions of Amiet's trailing edge noise model. Part 1: theory. J. Sound Vib. 286 (3), 477506.CrossRefGoogle Scholar
Roger, M. & Moreau, S. 2012 Addendum to the back-scattering correction of Amiet's trailing-edge noise model. J. Sound Vib. 331 (24), 53835385.CrossRefGoogle Scholar
Rozenberg, Y., Robert, G. & Moreau, S. 2012 Wall-pressure spectral model including the adverse pressure gradient effects. AIAA J. 50 (10), 21682179.CrossRefGoogle Scholar
Salze, E., Bailly, C., Marsden, O., Jondeau, E. & Juvé, D. 2014 An experimental characterisation of wall pressure wavevector-frequency spectra in the presence of pressure gradients. In 20th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Salze, E., Bailly, C., Marsden, O., Jondeau, E. & Juvé, D. 2015 An experimental investigation of wall pressure fluctuations beneath pressure gradients. In 21st AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Sandberg, R.D. 2015 Compressible-flow DNS with application to airfoil noise. Flow Turbul. Combust. 95, 211229.CrossRefGoogle Scholar
Sandberg, R.D. & Sandham, N.D. 2006 Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound. AIAA J. 44, 402405.CrossRefGoogle Scholar
Sanjosé, M. & Moreau, S. 2018 Fast and accurate analytical modeling of broadband noise for a low-speed fan. J. Acoust. Soc. Am. 143 (5), 31033113.CrossRefGoogle ScholarPubMed
Schewe, G. 1983 On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. J. Fluid Mech. 134, 311328.CrossRefGoogle Scholar
Schlatter, P., Li, Q., Brethouwer, G., Johansson, A.V. & Henningson, D.S. 2009 a High-Reynolds number turbulent boundary layers studied by numerical simulation. Bull. Am. Phys. Soc. 54.Google Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.CrossRefGoogle Scholar
Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H. & Henningson, D.S. 2009 b Turbulent boundary layers up to $Re_\theta = 2500$ studied through simulation and experiment. Phys. Fluids 21 (5), 051702.CrossRefGoogle Scholar
Schlichting, H. & Gersten, K. 2017 Boundary-Layer Theory. Springer.CrossRefGoogle Scholar
Schloemer, H.H. 1967 Effects of pressure gradients on turbulent-boundary-layer wall-pressure fluctuations. J. Acoust. Soc. Am. 42 (1), 93113.CrossRefGoogle Scholar
Sillero, J.A., Jiménez, J. & Moser, R.D. 2014 Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to $\delta ^{+}\approx 2000$. Phys. Fluids 26 (10), 105109.CrossRefGoogle Scholar
Simpson, R.L., Ghodbane, M. & McGrath, B.E. 1987 Surface pressure fluctuations in a separating turbulent boundary layer. J. Fluid Mech. 177, 167186.CrossRefGoogle Scholar
Skote, M., Henningson, D.S. & Henkes, R.A.W.M. 1998 Direct numerical simulation of self-similar turbulent boundary layers in adverse pressure gradients. Flow Turbul. Combust. 60 (1), 4785.CrossRefGoogle Scholar
Smits, A.J., Matheson, N. & Joubert, P.N. 1983 Low-Reynolds-number turbulent boundary layers in zero and favorable pressure gradients. J. Ship Res. 27 (03), 147157.CrossRefGoogle Scholar
Spalart, P.R. 1988 Direct simulation of a turbulent boundary layer up to $Re_\theta = 1410$. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Tam, C.K.W. & Yu, J.C. 1975 Trailing edge noise. In 2nd Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Tanarro, Á, Vinuesa, R. & Schlatter, P. 2020 Effect of adverse pressure gradients on turbulent wing boundary layers. J. Fluid Mech. 883, A8.CrossRefGoogle Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. A 164 (919), 476490.Google Scholar
Townsend, A.A. 1961 Equilibrium layers and wall turbulence. J. Fluid Mech. 11 (1), 97120.CrossRefGoogle Scholar
Van Blitterswyk, J. & Rocha, J. 2017 An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers. J. Acoust. Soc. Am. 141 (2), 12571268.CrossRefGoogle ScholarPubMed
Vila, C.S., Örlü, R., Vinuesa, R., Schlatter, P., Ianiro, A. & Discetti, S. 2017 Adverse-pressure-gradient effects on turbulent boundary layers: statistics and flow-field organization. Flow Turbul. Combust. 99 (3), 589612.CrossRefGoogle Scholar
Vinuesa, R., Hosseini, S.M., Hanifi, A., Henningson, D.S. & Schlatter, P. 2017 Pressure-gradient turbulent boundary layers developing around a wing section. Flow Turbul. Combust. 99 (3), 613641.CrossRefGoogle ScholarPubMed
Volino, R.J. 2020 Non-equilibrium development in turbulent boundary layers with changing pressure gradients. J. Fluid Mech. 897, A2.CrossRefGoogle Scholar
Wang, M., Moreau, S., Iaccarino, G. & Roger, M. 2009 LES prediction of wall-pressure fluctuations and noise of a low-speed airfoil. Intl J. Aeroacoust. 8 (3), 177197.CrossRefGoogle Scholar
Watmuff, J.H. 1989 An experimental investigation of a low Reynolds number turbulent boundary layer subject to an adverse pressure gradient. Ann. Res. Briefs, 3749.Google Scholar
Willmarth, W.W. 1956 Wall pressure fluctuations in a turbulent boundary layer. J. Acoust. Soc. Am. 28 (6), 10481053.CrossRefGoogle Scholar
Willmarth, W.W. 1975 Pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7 (1), 1336.CrossRefGoogle Scholar
Wills, J.A.B. 1964 On convection velocities in turbulent shear flows. J. Fluid Mech. 20, 417432.CrossRefGoogle Scholar
Wu, H., Moreau, S. & Sandberg, R.D. 2019 Effects of pressure gradient on the evolution of velocity-gradient tensor invariant dynamics on a controlled-diffusion aerofoil at $Re_c=150\,000$. J. Fluid Mech. 868, 584610.CrossRefGoogle Scholar
Wu, H., Moreau, S. & Sandberg, R.D. 2020 On the noise generated by a controlled-diffusion aerofoil at $Re_c=1.5\times 10^5$. J. Sound Vib. 487, 115620.CrossRefGoogle Scholar
Wu, H., Sanjose, M., Moreau, S. & Sandberg, R.D. 2018 Direct numerical simulation of the self-noise radiated by the installed controlled-diffusion airfoil at transitional Reynolds number. In 24th AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Wu, X., Moin, P., Wallace, J.M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA 114, E5292E5299.CrossRefGoogle ScholarPubMed
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar