Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T20:52:41.611Z Has data issue: false hasContentIssue false

On the development of fluid trapping beneath deformable fluid-cell membranes

Published online by Cambridge University Press:  20 April 2006

Randall Wu
Affiliation:
Department of Mechanical Engineering, The City College of The City University of New York, New York, NY 10031 Present address: Union Carbide Corporation, Bound Brook, New Jersey 08805.
Sheldon Weinbaum
Affiliation:
Department of Mechanical Engineering, The City College of The City University of New York, New York, NY 10031

Abstract

A quantitative theoretical model is developed to describe the time-dependent draining of an initially uniform-thickness fluid squeeze film between an infinitely flexible membrane-bound fluid cell and a planar rigid surface or between two symmetrically loaded cells subject to impulsive loading. The solution of the coupled nonlinear membrane-fluid-film equations shows that two characteristic times and lengthscales are required to describe the membrane deformation and draining behaviour of the fluid film. The early-time behaviour is strikingly different from that predicted by elastohydrodynamic squeeze-film theory (Christensen 1962), where the local elastic deformation of the boundary is not controlled by membrane tension but is pro-portional to the local film pressure. While fluid trapping occurs in both cases, a bidirectional flow is set up during the early-time period in the membrane squeeze film owing to the establishment of an off-axis pressure maximum near the edge of the near-contact area. Fluid is driven radially inward, causing upwelling of the membrane in the central region, and driven radially outward near the edge of the contact area., causing this region to form a narrow fluid gap. After the narrow-edge region hasformed, the off-axis pressure maximum gradually disappears and is replaced by a pressure plateau in the interior and a radial outflow at all locations that is similar to the elasto-hydrodynamic squeeze film. The present problem is closely related to the fluid films studied by Hartland (1967, 1968, 1969), Jones & Wilson (1978) and others when a, small spherical particle or fluid droplet rises or settles under gravity towards a uniform-tension fluid-fluid interface. These studies have theoretically and experimentally examined the long-time drainage of the film after the narrow edge region has formed and the fluid-trapping phenomenon is established. The solutions to the initial-value problem described herein show how this asymptotic quasi-steady drainage state is reached.

A simple experiment has been constructed to confirm qualitatively the theoretically predicted short-time behaviour. Experimental photographs graphically illustrate the gradual thickening of the lubricating layer near the origin and the formation and draining of the edge region as predicted by the membrane squeeze-film theory.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnard, A., Lopez, L. & Hellums, J. D. 1968 Microvas. Res. 1, 23.
Benjamin, M. K. 1969 Compliant surface bearings: an analytic investigation. Doctoral thesis, Columbia University, New York.
Bretherton, F. P. 1961 J. Fluid Mech. 10, 166.
Browne, A. L., Whicker, D. & Rohde, S. M. 1975 Tire Sci. Tech. 3, 16.
Castelli, V., Rightmire, G. K. & Fuller, D. D. 1967 Trans. A.S.M.E. F, J. Lubric. Tech. 89, 510.
Christensen, H. 1962 Proc. R. Soc. Lond. A 266, 312.
Christensen, H. 1970 Trans. A.S.M.E. F, J. Lubric. Tech. 92, 145.
Cox, B. G. 1962 J. Fluid Mech. 14, 81.
Davis, R. M. & Taylor, G. I. 1949 Proc. R. Soc. Lond. A 200, 375.
Dimitrov, D. S. & Ivanov, I. B. 1978 J. Colloid Interface Sci. 64, 97.
Dowson, D. & Higginson, G. R. 1960 J. Mech. Engng Sci. 2, 188.
Fitz-Gerald, J. M. 1969 Proc. R. Soc. Lond. B 174, 193.
Gaman, I. D. C., Higginson, G. T. & Norman, R. 1974 Wear 28, 345.
Goldsmith, H. L. & Mason, S. G. 1962 J. Fluid Mech. 14, 42.
Hartland, S. 1967 Trans. Instn Chem. Engrs 45, 97.
Hartland, S. 1968 J. Colloid Sci. 26, 283.
Hartland, S. 1969 Chem. Engng Sci. 24, 987.
Herrebrugh, K. 1970 Trans. A.S.M.E. F, J. Lubric. Tech. 92, 292.
Hildebrand, F. B. 1976 Advanced Calculus for Applications. Prentice-Hall.
Hochmuth, R. M., Marple, R. N. & Sutera, S. P. 1970 Microvas. Res. 2. 409.
Hyman, W. A. & Skalak, R. 1970 Viscous flow of a suspension of deformable liquid drops in a cylindrical tube. Tech. Rep. no. 5, Project NR 062–393, Dept of Civil Engng and Engng Mech., Columbia University.Google Scholar
Jones, A. F. & Wilson, S. D. R. 1978 J. Fluid Mech. 87, 263.
Lee, J. S. & Fung, Y. C. 1969 Microvas. Res. 1, 221.
Lee, K. M. & Cheng, H. S. 1973 Trans. A.S.M.E. F, J. Lubric. Tech. 95, 308.
Lighthill, M. J. 1968 J. Fluid Mech. 34, 113.
Lin, K. L., Lopez, L. & Hellums, J. D. 1973 Microvas. Res. 5, 7.
Lin, C. Y. & Slattery, J. C. 1982 U.S. Dept. of Energy: Fossil Energy Rep. DOE/BC/10068–16. To be published.
Princen, H. M. 1963 J. Colloid Sci. 18, 178.
Prothero, J. W. & Burton, A. C. 1961 Biophys. J. 1, 565.
Prothero, J. W. & Burton, A. C. 1962 Biophys. J. 2, 199.
Roberts, A. D. 1974 Lubrication studies of smooth rubber contacts. In The Physics of Tire Traction, Theory and Experiment (ed. D. F. Hays & A. L. Browne). Plenum.
Rohde, S. M., Whicker, D. & Browne, A. L. 1976 Trans. A.S.M.E. F, J. Lubric. Tech. 98, 401.
Schryer, N. L. 1977 Numerical solution of time-varying partial differential equations in one space variable. Bell Lab. Comp. Sci. Tech. Rep. no. 53.Google Scholar
Seshadri, V., Hochmuth, R. M., Croce, P. A. & Sutera, S. P. 1970 Microvas. Res. 2, 434.
Skalak, R. 1972 Mechanics of the microcirculation. In Biomechanics: Its Foundation and Objectives (ed. Y. C. Fung, N. Perrone & M. Anliker), p. 457. Prentice-Hall.
Sutera, S. P., Seshadri, V., Croce, P. A. & Hochmuth, R. M. 1970 Microvas. Res. 2, 420.
Tözeren, H. & Skalak, R. 1978 J. Fluid Mech. 87, 1.
Tözeren, H. & Skalak, R. 1979 J. Fluid Mech. 95, 743.
Whicker, D., Browne, A. L. & Rohde, S. M. 1976 J. Fluid Mech. 78, 247.
Wu, R. 1981 Ph.D. dissertation. City University of New York.
Wu, R., Pfeffer, R. & Weinbaum, S. 1981 Consolidation of a cellular fluid matrix; a simplified model of the cellular component of the artery wall. Submitted for publication.