Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T21:48:36.557Z Has data issue: false hasContentIssue false

On the departure of near-wall turbulence from the quasi-steady state

Published online by Cambridge University Press:  20 May 2019

Lionel Agostini*
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
Michael Leschziner
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

An examination is undertaken of the validity and limitations of the quasi-steady hypothesis of near-wall turbulence. This hypothesis is based on the supposition that the statistics of the turbulent fluctuations are universal if scaled by the local, instantaneous, wall shear when its variations are determined from footprints of large-scale, energetic, structures that reside in the outer part of the logarithmic layer. The examination is performed with the aid of direct numerical simulation data for a single Reynolds number, which are processed in a manner that brings out the variability of locally scaled statistics when conditioned on the local value of the wall friction. The key question is to what extent this variability is insignificant, thus reflecting universality. It is shown that the validity of the quasi-steady hypothesis is confined, at best, to a thin layer above the viscous sublayer. Beyond this layer, substantial variations in the conditioned shear-induced production rate of large-scale turbulence cause substantial departures from the hypothesis. Even within the wall-proximate layer, moderate departures are provoked by large-scale distortions in the conditioned strain rate that result in variations in small-scale production of turbulence down to the viscous sublayer.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, L. & Leschziner, M. 2014 On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26 (7), 075107.Google Scholar
Agostini, L. & Leschziner, M. 2016 On the validity of the quasi-steady-turbulence hypothesis in representing the effects of large scales on small scales in boundary layers. Phys. Fluids 28 (4), 045102.10.1063/1.4944735Google Scholar
Agostini, L. & Leschziner, M. 2018 The impact of footprints of large-scale outer structures on the near-wall layer in the presence of drag-reducing spanwise wall motion. Flow Turbul. Combust. 100, 10371061.Google Scholar
Agostini, L. & Leschziner, M. 2019 The connection between the spectrum of turbulent scales and the skin-friction statistics in channel flow at Re 𝜏 ≈ 1000. J. Fluid Mech. (submitted), doi:10.13140/RG.2.2.35023.53924.Google Scholar
Banerjee, S., Krahl, R., Durst, F. & Zenger, C. 2007 Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul. 8, N32.Google Scholar
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C. & Liu, H. H. 1998 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A 454 (1971), 903995.Google Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26 (1), 011702.Google Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2011 A predictive inner–outer model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566.Google Scholar
Zhang, C. & Chernyshenko, S. I. 2016 Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Phys. Rev. Fluids 1 (1), 014401.Google Scholar