Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T04:44:16.403Z Has data issue: false hasContentIssue false

On the correlation between vortex breakdown bubble and planar helicity in Vogel–Escudier flow

Published online by Cambridge University Press:  06 February 2020

Manjul Sharma
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai600036, India
A. Sameen*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai600036, India
*
Email address for correspondence: [email protected]

Abstract

Bubble-type vortex breakdown in axial vortices is investigated numerically through a model problem of flow inside a cylinder with a top rotating lid, referred to as ‘Vogel–Escuider flow’. The parameters of the flow are Reynolds number ($Re$), based on the rotation speed of the top plate, and aspect ratio ($\unicode[STIX]{x1D6E4}$), which is the ratio of height to radius of the cylinder, depending on which the flow exhibits steady or unsteady breakdown bubble topologies. The flow is analysed for Reynolds number up to 5000 for $\unicode[STIX]{x1D6E4}=2.5$ using helicity density. In the absence of vortex breakdown, the helicity density does not change the sign in the bulk, while in the event of a breakdown, it changes the sign from positive to negative in the vicinity of the breakdown bubble. The three-dimensional flow is further represented as the sum of a two-dimensional velocity field in the $rz$ plane and an out-of-plane velocity vector based on the respective energies, referred to as two-dimensional three-component flow. Here $r$ is the radial coordinate, $z$ is the axial coordinate and $\unicode[STIX]{x1D703}$ is the azimuthal coordinate. Helicity density of the flow is then decomposed into planar helicity $(h_{r,z})$ and out-of-plane helicity $(h_{\unicode[STIX]{x1D703}})$. We show that a correlation exists between planar helicity and the vortex breakdown bubble. We also show that the topology of the breakdown bubbles is described by the planar helicity. Using only this planar helicity, the entire breakdown bubble is reconstructed for axisymmetric as well as non-axisymmetric flows.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biferale, L., Buzzicotti, M. & Linkmann, M. 2017 From two-dimensional to three-dimensional turbulence through two-dimensional three-component flows. Phys. Fluids 29 (11), 111101.CrossRefGoogle Scholar
Blackburn, H. M. & Lopez, J. M. 2000 Symmetry breaking of the flow in a cylinder driven by a rotating end wall. Phys. Fluids 12 (11), 26982701.CrossRefGoogle Scholar
Brown, G. L. & Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 2. Physical mechanisms. J. Fluid Mech. 221, 553576.CrossRefGoogle Scholar
Delery, J. M. 1994 Aspects of vortex breakdown. Prog. Aerosp. Sci. 30 (1), 159.CrossRefGoogle Scholar
Elting, D. 1985 Some aspects of helicity in atmospheric flows. Beitr. Phys. Atmos. 58, 88100.Google Scholar
Escudier, M. P. 1984 Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids 2 (4), 189196.CrossRefGoogle Scholar
Escudier, M. P. 1988 Vortex breakdown: observations and explanations. Prog. Aerosp. Sci. 25 (2), 189229.CrossRefGoogle Scholar
Escudier, M. P. & Keller, J. J. 1983 Vortex breakdown: a two-stage transition. AGARD CP 342, 18.Google Scholar
Fujimura, K., Yoshizawa, H., Iwatsu, R., Koyama, H. S. & Hyun, J. M. 2001 Velocity measurements of vortex breakdown in an enclosed cylinder. J. Fluids Engng 123 (3), 604611.CrossRefGoogle Scholar
Goldshtik, M. & Hussain, F. 1998 Analysis of inviscid vortex breakdown in a semi-infinite pipe. Fluid Dyn. Res. 23 (4), 189234.CrossRefGoogle Scholar
Greenspan, H. P. 1969 Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Hiejima, T. 2018 Onset conditions for vortex breakdown in supersonic flows. J. Fluid Mech. 840, R1.CrossRefGoogle Scholar
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10 (1), 221246.CrossRefGoogle Scholar
Levy, Y., Degani, D. & Seginer, A. 1990 Graphical visualization of vortical flows by means of helicity. AIAA J. 28 (8), 13471352.CrossRefGoogle Scholar
Lilly, D. K. 1986 The structure, energetics and propagation of rotating convective storms. Part II. Helicity and storm stabilization. J. Atmos. Sci. 43 (2), 126140.2.0.CO;2>CrossRefGoogle Scholar
Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 1. Confined swirling flow. J. Fluid Mech. 221, 533552.CrossRefGoogle Scholar
Lopez, J. M. & Perry, A. D. 1992 Axisymmetric vortex breakdown. Part 3. Onset of periodic flow and chaotic advection. J. Fluid Mech. 234, 449471.CrossRefGoogle Scholar
Lugt, H. J. 1996 Introduction to Vortex Theory. Vortex Flow Press.Google Scholar
Michaud, M. 1787 Observation d’une trombe de mer faite a Nice de Provence en 1780. J. Phys. Chim. Hist. Nat. Arts 30, 284289.Google Scholar
Moffatt, H. K. & Tsinober, A. 1992 Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24 (1), 281312.CrossRefGoogle Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit, Fluid Mechanics and Its Applications, vol. 55. Springer.CrossRefGoogle Scholar
Paterson, O., Wang, B. & Mao, X. 2018 Coherent structures in the breakdown bubble of a vortex flow. AIAA J. 56 (5), 18121817.CrossRefGoogle Scholar
Pauley, R. L. & Snow, J. T. 1988 On the kinematics and dynamics of the 18 July 1986 Minneapolis tornado. Mon. Weath. Rev. 116 (12), 27312736.Google Scholar
Peckham, D. H. & Atkinson, S. A.1957 Preliminary results of low speed wind tunnel tests on a gothic wing of aspect ratio 1.0. ARC Tech. Rep. 508. Aeronautical Research Council.Google Scholar
Sarasija, S.2014 Studies on veortex breakdown in a closed cylinder with a rotating endwall. MS dissertation, IISc, Bangalore.Google Scholar
Sarpkaya, T. 1971 On stationary and travelling vortex breakdowns. J. Fluid Mech. 45 (3), 545559.CrossRefGoogle Scholar
Scheeler, M. W., Van Rees, W. M., Kedia, H., Kleckner, D. & Irvine, W. T. M. 2017 Complete measurement of helicity and its dynamics in vortex tubes. Science 357 (6350), 487491.CrossRefGoogle ScholarPubMed
Serre, E. & Bontoux, P. 2002 Vortex breakdown in a three-dimensional swirling flow. J. Fluid Mech. 459, 347370.CrossRefGoogle Scholar
Sharma, M. & Sameen, A. 2019 Axisymmetric vortex breakdown: a barrier to mixing. Phys. Scr. 94 (5), 054005.CrossRefGoogle Scholar
Shtern, V. 2018 Cellular Flows: Topological Metamorphoses in Fluid Mechanics. Cambridge University Press.CrossRefGoogle Scholar
Shtern, V. & Hussain, F. 1999 Collapse, symmetry breaking, and hysteresis in swirling flows. Annu. Rev. Fluid Mech. 31 (1), 537566.CrossRefGoogle Scholar
Spall, R. E. & Gatski, T. B.1990 A computational study of the taxonomy of vortex breakdown. AIAA-90-1624.CrossRefGoogle Scholar
Stevens, J. L., Lopez, J. M. & Cantwell, B. J. 1999 Oscillatory flow states in an enclosed cylinder with a rotating endwall. J. Fluid Mech. 389, 101118.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.CrossRefGoogle Scholar
Vishnu, R. & Sameen, A. 2019 Heat transport in rotating-lid Rayleigh–Bénard convection. Phys. Scr. 94 (5), 054004.CrossRefGoogle Scholar
Vogel, H. U. 1968 Experimentelle Ergebnisse über die laminare Strömung in einem zylindrischen Gehäuse mit darin rotierender Scheibe, vol. 6. Max-Planck-Institut für Strömungsforschung.Google Scholar
Wang, S. & Rusak, Z. 1997 The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown. J. Fluid Mech. 340, 177223.CrossRefGoogle Scholar
Yoshizawa, A., Yokoi, N., Nisizima, S., Itoh, S.-I. & Itoh, K. 2001 Variational approach to a turbulent swirling pipe flow with the aid of helicity. Phys. Fluids 13 (8), 23092319.CrossRefGoogle Scholar