Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-12-01T00:35:44.278Z Has data issue: false hasContentIssue false

On the behaviour of impinging zero-net-mass-flux jets

Published online by Cambridge University Press:  24 November 2016

Carlo Salvatore Greco*
Affiliation:
Department of Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
Gennaro Cardone
Affiliation:
Department of Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
Julio Soria
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, Clayton Campus, Melbourne, Victoria 3800, Australia Department of Aeronautical Engineering, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
*
Email address for correspondence: [email protected]

Abstract

This paper reports on an experimental study of the influence of the Strouhal number (0.011, 0.022 and 0.044) and orifice-to-plate distances (2, 4 and 6 orifice diameters) on the flow field of an impinging zero-net-mass-flux jet at a Reynolds number equal to 35 000. These jets are generated by a reciprocating piston that oscillates in a cavity behind a circular orifice. Instantaneous two-dimensional in-plane velocity fields are measured in a plane containing the orifice axis using multigrid/multipass cross-correlation digital particle image velocimetry. These measurements have been used to investigate the mean flow quantities and turbulent statistics of the impinging zero-net-mass-flux jets. In addition, the vortex ring behaviour is analysed via its trajectory and azimuthal vorticity as well as the saddle point excursion, the flow rate and entrainment. The behaviour of all these quantities depends on the Strouhal number and the orifice-to-plate distance because the former governs the presence and the relative importance of the vortex ring and the trailing jet on the flow field and the latter delimits the downstream evolution of these structures.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, G. N. 1963 The Theory of Turbulent Jets. MIT Press.Google Scholar
Agrawal, A. & Prasad, K. 2004 Evolution of a turbulent jet subjected to volumetric heating. J. Fluid Mech. 511, 95123.Google Scholar
Agrawal, A. & Verma, G. 2008 Similarity analysis of planar and axisymmetric turbulent synthetic jets. Intl J. Heat Mass Transfer 51, 61946198.CrossRefGoogle Scholar
Bazdidi-Therani, F., Karami, M. & Jahromi, M. 2011 Unsteady flow and heat transfer analysis of an impinging synthetic jet. Heat Mass Transfer 47 (11), 13631373.Google Scholar
Buchmann, N. A., Atkinson, C. & Soria, J. 2013 Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil. Exp. Fluids 54 (3), 114.Google Scholar
Cafiero, G., Discetti, S. & Astarita, T. 2015 Flow field topology of submerged jets with fractal generated turbulence. Phys. Fluids 27 (11), 115103.Google Scholar
Carlomagno, G. M. & Ianiro, A. 2014 Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: a review. Exp. Therm. Fluid Sci. 58, 1535.Google Scholar
Cater, J. & Soria, J. 2002 The evolution of round zero-net-mass-flux jets. J. Fluid Mech. 472, 167200.CrossRefGoogle Scholar
Chaudhari, M., Puranik, B. & Agrawal, A. 2010 Heat transfer characteristics of synthetic jet impingement cooling. Intl J. Heat Mass Transfer 53, 10571069.CrossRefGoogle Scholar
Coe, D. J., Allen, M. G., Trautman, M. A. & Glezer, A. 1994 Micromachined jets for manipulation of macro flows. In Proceedings of the Solid-State Sensor and Actuators Workshop, Hilton Head, South Carolina, pp. 243247. IEEE.Google Scholar
Coe, D. J., Allen, M. G., Trautman, M. A. & Glezer, A. 1995 Addressable micromachined jets arrays. In Proceedings of the Solid-State Sensor and Actuator Workshop, Stockholm, Sweden, pp. 329332. IEEE.Google Scholar
Dairay, T., Fortuné, V., Lamballais, E. & Brizzi, L.-E. 2015 Direct numerical simulation of a turbulent jet impinging on a heated wall. J. Fluid Mech. 764, 362394.CrossRefGoogle Scholar
Eckart, C. 1948 Vortices and streams caused by sound waves. Phys. Rev. 73, 6876.CrossRefGoogle Scholar
Fabris, D., Liepmann, D. & Marcus, D. 1994 Quantitative experimental and numerical investigation of a vortex ring impinging on a wall. Phys. Fluids 8 (10), 26402649.Google Scholar
Fouras, A. & Soria, J. 1998 Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp. Fluids 25 (5–6), 409430.CrossRefGoogle Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34, 503529.CrossRefGoogle Scholar
Gomes, L. D., Crowther, W. J. & Wood, N. J. 2006 Towards a practical piezoceramic diaphragm based synthetic jet actuator for high subsonic applications – effect of chamber and orifice depth on actuator peak velocity. In Proceedings of the 3rd AIAA Flow Control Conference, San Francisco, California, vol. 5 (8), pp. 267283. AIAA.Google Scholar
Greco, C. S., Castrillo, G., Crispo, M. C., Astarita, T. & Cardone, G. 2016 Investigation of impinging single and twin circular synthetic jets flow field. Exp. Therm. Fluid Sci. 74, 354367.Google Scholar
Greco, C. S., Ianiro, A., Astarita, T. & Cardone, G. 2013 On the near field of single and twin circular synthetic air jets. Intl J. Heat Fluid Flow 44, 4155.CrossRefGoogle Scholar
Greco, C. S., Ianiro, A. & Cardone, G. 2014 Time and phase average heat transfer in single and twin circular synthetic impinging air jets. Intl J. Heat Mass Transfer 73, 776788.Google Scholar
Gutmark, E., Yassour, Y. & Wolfshtein, M. 1982 Acoustic enhancement of heat transfer in plane channels. In Proceedings of the 7th International Heat Transfer Conference (ed. Grigull, U., Hahne, E., Stephan, K. & Straub, J.), pp. 441445. Technische Universitat Munchen.Google Scholar
Hadžiabdić, M. & Hanjalić, K. 2008 Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 591, 221260.Google Scholar
Hart, D. P. 2000 PIV error correction. Exp. Fluids 29, 1322.Google Scholar
Holmann, R., Utturkar, Y., Mittal, R., Smith, B. L. & Cattafesta, L. 2005 Formation criterion for synthetic jets. AIAA J. 43 (10), 21102116.Google Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41 (2), 241258.CrossRefGoogle Scholar
Ingard, U. & Labate, S. 1950 Acoustic effects and nonlinear impedance of orifices. J. Acoust. Soc. Am. 22, 211218.Google Scholar
James, R. D., Jacobs, J. W. & Glezer, A. 1996 A round turbulent jet produced by an oscillating diaphragm. Phys. Fluids 8 (9), 24842495.Google Scholar
Khashehchi, M., Ooi, A., Soria, J. & Marusic, I. 2013 Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. Exp. Fluids 54 (1), 112.Google Scholar
Kitsios, V., Cordier, L., Bonnet, J. P., Ooi, A. & Soria, J. 2010 Development of a nonlinear eddy-viscosity closure for the triple-decomposition stability analysis of a turbulent channel. J. Fluid Mech. 664, 74107.Google Scholar
Kral, L., Donovan, J. F., Cain, A. B. & Cary, A. W. 1997 Numerical simulation of synthetic jet actuators. In Proceedings of the 4th AIAA Shear Flow Control Conference, Snowmass Village, Colorado. AIAA.Google Scholar
Lebedeva, I. V. 1980 Experimental study of acoustic streaming in the vicinity of orifices. Sov. Phys. Acoust. 26, 331333.Google Scholar
Lighthill, S. J. 1978 Acoustic streaming. J. Sound Vib. 61, 391418.Google Scholar
de Luca, L., Girfoglio, M. & Coppola, G. 2014 Modeling and experimental validation of the frequency response of synthetic jet actuators. AIAA J. 52 (8), 17331748.Google Scholar
Mahalingam, R. & Glezer, A. 2005 Design and thermal characteristic of a synthetic jet ejector heat sink. J. Electron. Packaging 127, 172177.Google Scholar
Mallinson, S. G., Hong, G. & Reizes, J. A.1999 Some characteristics of synthetic jets, AIAA Paper 99-3651.Google Scholar
Mathew, J. & Basu, J. 2002 Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14 (7), 20652072.Google Scholar
McGuinn, A., Farrelly, R., Persoons, T. & Murray, D. B. 2013 Flow regime characterization of an impinging axisymmetric synthetic jet. Exp. Therm. Fluid Sci. 47, 241251.Google Scholar
Medinkow, E. P. & Novitskii, B. G. 1975 Experimental study of intense acoustic streaming. Sov. Phys. Acoust. 21, 152154.Google Scholar
Müller, M. O., Bernal, L. P., Moran, R. P., Washabaugh, P. D., Parviz, B. A., Zhang, ad C., Allen Chou, T. K. & Najafi, K. 2000 Thrust performance of micromachined synthetic jets. In AIAA Fluids Meeting 2000-2404, Denver, Colorado.Google Scholar
Pavlova, A. & Amitay, M. 2006 Electronic cooling using synthetic jet impingement. Trans. ASME J. Heat Transfer 128 (9), 897907.Google Scholar
Persoons, T. 2012 General reduced-order model to design and operate synthetic jet actuators. AIAA J. 50 (4), 916927.CrossRefGoogle Scholar
Persoons, T., McGuinn, A. & Murray, D. B. 2011 A general correlation for the stagnation point Nusselt number of an axisymmetric impinging synthetic jet. Intl J. Heat Mass Transfer 54, 39003908.CrossRefGoogle Scholar
Philip, J. & Marusic, I. 2012 Large-scale eddies and their role in entrainment in turbulent jets and wakes. Phys. Fluids 24 (5), 055108.Google Scholar
Rayleigh, Lord 1883 Scientific papers. Phil. Trans. R. Soc. Lond. 175, 121.Google Scholar
Rayleigh, Lord 1896 Theory of Sound. Macmillan.Google Scholar
Rizzetta, D. P., Visbal, M. R. & Stanek, M. J. 1999 Numerical investigation of synthetic-jet flowfields. AIAA J. 37 (8), 919927.CrossRefGoogle Scholar
Rohlfs, W., Haustein, H. D., Garbrecht, O. & Kneer, R. 2012 Insights into the local heat transfer of a submerged impinging jet: influence of local flow acceleration and vortex–wall interaction. Intl J. Heat Mass Transfer 55, 77287736.Google Scholar
Roux, S., Fénot, M., Lalizel, G., Brizzi, L.-E. & Dorignac, E. 2011 Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation. Intl J. Heat Mass Transfer 54, 32773290.Google Scholar
Shuster, J. M. & Smith, D. R. 2007 Experimental study of the formation and scaling of a round synthetic jet. Phys. Fluids 19 (4), 045109.Google Scholar
Smith, B. L. & Glezer, A. 1998 The formation end evolution of synthetic jets. Phys. Fluids 10 (9), 22812297.Google Scholar
Smith, B. L. & Swift, G. W. 2003 A comparison between synthetic jets and continuous jets. Exp. Fluids 34 (4), 467472.Google Scholar
Soria, J. 1996a An adaptive cross-correlation digital PIV technique for unsteady flow investigations. In Proceedings of the 1st Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion (ed. Masri, A. & Honnery, D.), pp. 2948. University of Sydney.Google Scholar
Soria, J. 1996b An investigation of the near wake of a circular cylinder using a videobased digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12 (2), 221223.Google Scholar
Soria, J. 1998 Multigrid approach to cross-correlation digital PIV and HPIV analysis. In Proceedings of the 13th Australasian Fluid Mechanics Conference (ed. Thomson, M. C. & Hourigan, K.), pp. 381384. Monash University.Google Scholar
Soria, J. 2015 Experimental studies of the near-field spatio-temporal evolution of zero-net-mass-flux (ZNMF) jets. In Vortex Rings and Jets (ed. New, D. T. H. & Yu, S. C. M.), pp. 6192. Springer.Google Scholar
Soria, J., Cater, J. & Kostas, J. 1999 High resolution multigrid cross-correlation digital PIV measurements of a turbulent starting jet using half frame image shift film recording. Opt. Laser Technol. 31, 312.CrossRefGoogle Scholar
Soria, J. & Parker, K. 2005 Non-intrusive PIV measurements of turbulence-application to a free round jet. In Proceedings of the 4th Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Adelaide, Australia, pp. 1320. University of Adelaide.Google Scholar
Tuck, A. & Soria, J. 1995 Separation control on a NACA 0015 airfoil using a 2D micro ZNMF jet. Aircraft Engng Aerosp. Technol. 80 (20), 175180.Google Scholar
Valiorgue, P., Persoons, T., McGuinn, A. & Murray, D. B. 2009 Heat transfer mechanisms in an impinging synthetic jet for small jet-to-surface spacing. Exp. Therm. Fluid Sci. 33, 597603.Google Scholar
Wang, H. & Menon, S. 2001 Fuel–air mixing enhancement by synthetic microjets. AIAA J. 39 (12), 23082319.Google Scholar
Westerweel, J. 1994 Efficient detection of spurious vectors in particle image velocimetry data. Exp. Fluids 16, 236247.Google Scholar