Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T10:10:08.974Z Has data issue: false hasContentIssue false

On the anisotropy of the turbulent passive scalar in the presence of a mean scalar gradient

Published online by Cambridge University Press:  10 March 2014

Wouter J. T. Bos*
Affiliation:
LMFA-CNRS, Université de Lyon, Ecole Centrale de Lyon, 69134 Ecully, France
*
Email address for correspondence: [email protected]

Abstract

We investigate the origin of the scalar gradient skewness in isotropic turbulence on which a mean scalar gradient is imposed. The problem of the advection of an anisotropic scalar field is reformulated in terms of the advection of an isotropic vector field. For this field, triadic closure equations are derived. It is shown how the scaling of the scalar gradient skewness depends on the choice of the time scale used for the Lagrangian decorrelation of the vector field. The persistent anisotropy in the small scales for the third-order statistics is shown to be perfectly compatible with Corrsin–Obukhov scaling for second-order quantities, since second- and third-order scalar quantities are governed by a different triad correlation time scale. Whereas the inertial range dynamics of second-order scalar quantities is governed by the Lagrangian velocity correlation time, the third-order quantities remain correlated over a time related to the large-scale dynamics of the scalar field. It is argued that this time is determined by the average time it takes for a fluid particle to travel between ramp-cliff scalar structures.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arad, I., L’vov, V. S. & Procaccia, I. 1999 Correlation functions in isotropic and anisotropic turbulence: the role of the symmetry group. Phys. Rev. E 59, 67536765.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Bos, W. J. T. & Bertoglio, J.-P. 2006 A single-time two-point closure based on fluid particle displacements. Phys. Fluids 18, 031706.CrossRefGoogle Scholar
Bos, W. J. T. & Bertoglio, J.-P. 2013 Lagrangian Markovianized field approximation for turbulence. J. Turbul. 14, 99120.CrossRefGoogle Scholar
Bos, W. J. T., Chevillard, L., Scott, J. F. & Rubinstein, R. 2012a Reynolds number effect on the velocity increment skewness in isotropic turbulence. Phys. Fluids 24, 015108.CrossRefGoogle Scholar
Bos, W. J. T., Rubinstein, R. & Fang, L. 2012b Reduction of mean-square advection in turbulent passive scalar mixing. Phys. Fluids 24, 075104.Google Scholar
Bos, W. J. T., Touil, H. & Bertoglio, J.-P. 2005 Reynolds number dependency of the scalar flux spectrum in isotropic turbulence with a uniform scalar gradient. Phys. Fluids 17, 125108.CrossRefGoogle Scholar
Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M. 2003 Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech. 474, 193225.Google Scholar
Cambon, C. & Scott, J. F. 1999 Linear and nonlinear models of anisotropic turbulence. Annu. Rev. Fluid Mech. 31, 153.CrossRefGoogle Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469473.CrossRefGoogle Scholar
Corrsin, S. 1952 Heat transfer in isotropic turbulence. J. Appl. Phys. 23 (1), 113118.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence, the Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Garg, S. & Warhaft, Z. 1998 On the small scale structure of simple shear flow. Phys. Fluids 10, 662673.CrossRefGoogle Scholar
Gotoh, T. & Watanabe, T. 2012 Scalar flux in a uniform mean scalar gradient in homogeneous isotropic steady turbulence. Physica D 241, 141148.CrossRefGoogle Scholar
Gotoh, T., Watanabe, T. & Suzuki, Y. 2011 Universality and anisotropy in passive scalar fluctuations in turbulence with uniform mean gradient. J. Turbul. 12, N48.Google Scholar
Herr, S., Wang, L. P. & Collins, L. R. 1996 EDQNM model of a passive scalar with a uniform mean gradient. Phys. Fluids 8, 15881608.CrossRefGoogle Scholar
Herring, J. R. 1974 Approach of axisymmetric turbulence to isotropy. Phys. Fluids 17, 859872.CrossRefGoogle Scholar
Herring, J. R., Schertzer, D., Lesieur, M., Newman, G. R., Chollet, J. P. & Larcheveque, M. 1982 A comparative assessment of spectral closures as applied to passive scalar diffusion. J. Fluid Mech. 124, 411437.Google Scholar
Holzer, M. & Siggia, E. 1994 Turbulent mixing of a passive scalar. Phys. Fluids A 6, 18201837.Google Scholar
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and the problems of turbulence. J. Fluid Mech. 212, 497532.CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.CrossRefGoogle Scholar
Ishihara, T., Yoshida, K. & Kaneda, Y. 2002 Anisotropic velocity correlation spectrum at small scales in a homogeneous turbulent shear flow. Phys. Rev. Lett. 88, 154501.Google Scholar
Kaneda, Y. 1981 Renormalized expansions in the theory of turbulence with the use of the Lagrangian position function. J. Fluid. Mech. 107, 131145.CrossRefGoogle Scholar
Kaneda, Y. & Yoshida, K. 2004 Small-scale anisotropy in stably stratified turbulence. New J. Phys. 6, 34.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 301305.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.CrossRefGoogle Scholar
Kraichnan, R. H. 1959 The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5, 497543.Google Scholar
Kraichnan, R. H. 1964 Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys. Fluids 7, 17231734.CrossRefGoogle Scholar
Kraichnan, R. H. 1965 Lagrangian-history closure approximation for turbulence. Phys. Fluids 8, 575598.CrossRefGoogle Scholar
Kraichnan, R. H. 1968a Lagrangian-history statistical theory for Burgers’ equation. Phys. Fluids 11, 265277.CrossRefGoogle Scholar
Kraichnan, R. H. 1968b Small-scale structure of a scalar field convected by turbulence. Phys. Fluids 11, 945953.CrossRefGoogle Scholar
Kraichnan, R. H. 1971 An almost-Markovian Galilean-invariant turbulence model. J. Fluid Mech. 47, 513524.CrossRefGoogle Scholar
Kurien, S., Aivalis, K. & Sreenivasan, K. R. 2001 Anisotropy of small-scale scalar turbulence. J. Fluid Mech. 448, 279288.CrossRefGoogle Scholar
Lumley, J. L. 1967 Similarity and the turbulent energy spectrum. Phys. Fluids 10, 855858.CrossRefGoogle Scholar
Mestayer, P. 1982 Local isotropy and anisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 475503.CrossRefGoogle Scholar
Mydlarski, L., Pumir, A., Shraiman, B. I., Siggia, E. D. & Warhaft, Z. 1998 Structures and multipoint correlators for turbulent advection: predictions and experiments. Phys. Rev. Lett. 81, 43734376.Google Scholar
Mydlarski, L. & Warhaft, Z. 1998a Passive scalar statistics in high Peclet number grid turbulence. J. Fluid Mech. 358, 135175.Google Scholar
Mydlarski, L. & Warhaft, Z. 1998b Three-point statistics and the anisotropy of a turbulent passive scalar. Phys. Fluids 10, 28852894.Google Scholar
Newman, G. R. & Herring, J. R. 1979 A test field model of a passive scalar in isotropic turbulence. J. Fluid Mech, 94, 163194.CrossRefGoogle Scholar
Obukhov, A. M. 1949 Structure of the temperature field in turbulent flows. Isv. Akad. Nauk SSSR Geogr. Geofiz. 13, 5869.Google Scholar
O’Gorman, P. A. & Pullin, D. I. 2005 Effect of Schmidt number on the velocity-scalar cospectrum in isotropic turbulence with a mean scalar gradient. J. Fluid Mech. 532, 111140.CrossRefGoogle Scholar
Pumir, A. 1994 A numerical study of the mixing of a passive scalar in three dimensions in the presence of a mean gradient. Phys. Fluids 6, 21182132.CrossRefGoogle Scholar
Pumir, A. & Shraiman, B. I. 1995 Persistent small scale anisotropy in homogeneous shear flows. Phys. Rev. Lett. 75, 31143117.CrossRefGoogle ScholarPubMed
Roberts, P. H. 1961 Analytical theory of turbulent diffusion. J. Fluid Mech. 11, 257283.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Shen, X. & Warhaft, Z. 2000 The anisotropy of the small scale structure in high Reynolds number ( $R_\lambda \sim 1000$ ) turbulent shear flow. Phys. Fluids 12, 29762989.CrossRefGoogle Scholar
Sreenivasan, K. R. & Antonia, R. A. 1977 Skewness of temperature derivatives in turbulent shear flows. Phys. Fluids 20, 19861988.CrossRefGoogle Scholar
Tong, C. & Warhaft, Z. 1994 On passive scalar derivative statistics in grid turbulence. Phys. Fluids 6, 21652176.CrossRefGoogle Scholar
Ulitsky, M. & Collins, L. R. 2000 On constructing realizable, conservative mixed scalar equations using the eddy-damped quasi-normal Markovian theory. J. Fluid Mech. 412, 303329.CrossRefGoogle Scholar
Van Atta, C. W. & Antonia, R. A. 1980 Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids 23, 252257.CrossRefGoogle Scholar
Watanabe, T. & Gotoh, T. 2007 Scalar flux spectrum in isotropic steady turbulence with a uniform mean gradient. Phys. Fluids 19, 121701.CrossRefGoogle Scholar
Yeung, P. K., Xu, S. & Sreenivasan, K. R. 2002 Schmidt number effects on turbulent transport with uniform mean scalar gradient. Phys. Fluids 14 (12), 41784191.CrossRefGoogle Scholar