Hostname: page-component-f554764f5-fr72s Total loading time: 0 Render date: 2025-04-20T13:14:01.812Z Has data issue: false hasContentIssue false

On Richtmyer–Meshkov finger collisions in a light fluid layer under reshock conditions

Published online by Cambridge University Press:  02 December 2024

Xu Guo
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Zhouyang Cong
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Ting Si*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Email address for correspondence: [email protected]

Abstract

The fingers known as bubbles (spikes) resulting from the penetration of light (heavy) fluids into heavy (light) fluids are significant large-scale features of Richtmyer–Meshkov instability (RMI). Through shock-tube experiments, we study finger collisions in light fluid layers under reshock conditions. Four unperturbed fluid layers with varying thicknesses are created to analyse the motion of waves and interfaces during finger collisions. The wave dynamics, sensitive to initial layer thicknesses, are characterized by a one-dimensional theory. Eight perturbed fluid layers, with four thicknesses and two interface phase combinations, are generated to explore the finger collision mechanism. It is shown that after reshock, the initial in-phase and anti-phase cases undergo spike–bubble rear-end collisions (SBCs) and spike–spike head-on collisions (SSCs), respectively. Compared with SBCs, SSCs significantly suppress spike growth, leading to the attenuation of perturbation growth, especially for larger thicknesses. As the initial thickness decreases, an SSC impedes the downstream interface from reversing its phase, resulting in abnormal RMI, thereby reducing the SSC's effectiveness in attenuating growth. The effects of rarefaction waves enhance both interfaces’ amplitudes and the whole layer's thickness, diminishing the intensity of finger collisions, while the second reshock exerts an opposing influence. Linear and nonlinear models, incorporating the influence of reshocks and rarefaction waves, are developed to predict the interface perturbation growth before and after finger collisions.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bai, X., Deng, X. & Jiang, L. 2018 A comparative study of the single-mode Richtmyer–Meshkov instability. Shock Waves 28, 795813.CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Ristorcelli, J.R., Balasubramanian, S., Prestridge, K.P. & Tomkins, C.D. 2012 Turbulent mixing in a Richtmyer–Meshkov fluid layer after reshock: velocity and density statistics. J. Fluid Mech. 696, 6793.CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Tomkins, C.D. & Prestridge, K.P. 2008 a Dependence of growth patterns and mixing width on initial conditions in Richtmyer–Meshkov unstable fluid layers. Phys. Scr. 132, 014013.CrossRefGoogle Scholar
Balakumar, B.J., Orlicz, G.C., Tomkins, C.D. & Prestridge, K.P. 2008 b Simultaneous particle-image velocimetry–planar laser-induced fluorescence measurements of Richtmyer–Meshkov instability growth in a gas curtain with and without reshock. Phys. Fluids 20, 124103.CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G.C. & Prestridge, K.P. 2013 Experimental study of initial condition dependence on turbulent mixing in shock-accelerated Richtmyer–Meshkov fluid layers. J. Turbul. 14, 170196.CrossRefGoogle Scholar
Balasubramanian, S., Orlicz, G.C., Prestridge, K.P. & Balakumar, B.J. 2012 Experimental study of initial condition dependence on Richtmyer–Meshkov instability in the presence of reshock. Phys. Fluids 24, 034103.CrossRefGoogle Scholar
Betti, R. & Hurricane, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12, 435448.CrossRefGoogle Scholar
Brouillette, M. & Sturtevant, B. 1993 Experiments on the Richtmyer–Meshkov instability: small-scale perturbations on a plane interface. Phys. Fluids A 5, 916930.CrossRefGoogle Scholar
Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer–Meshkov instability: single-scale perturbations on a continuous interface. J. Fluid Mech. 263, 271292.CrossRefGoogle Scholar
Buttler, W.T., et al. 2012 Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 6084.CrossRefGoogle Scholar
Charakhch'yan, A.A. 2001 Reshocking at the non-linear stage of Richtmyer–Meshkov instability. Plasma Phys. Control. Fusion 43, 1169.CrossRefGoogle Scholar
Cheng, B., Kwan, T.J.T., Wang, Y.M., Merrill, F.E., Cerjan, C.J. & Batha, S.H. 2015 Analysis of NIF experiments with the minimal energy implosion model. Phys. Plasmas 22, 082704.CrossRefGoogle Scholar
Clark, D.S., et al. 2017 Capsule modeling of high foot implosion experiments on the National Ignition Facility. Plasma Phys. Control. Fusion 59, 055006.CrossRefGoogle Scholar
Collins, B.D. & Jacobs, J.W. 2002 PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF$_6$ interface. J. Fluid Mech. 464, 113136.CrossRefGoogle Scholar
Cong, Z., Guo, X., Si, T. & Luo, X. 2022 Experimental and theoretical studies on heavy fluid layers with reshock. Phys. Fluids 34, 104108.CrossRefGoogle Scholar
Dimonte, G. & Ramaprabhu, P. 2010 Simulations and model of the nonlinear Richtmyer–Meshkov instability. Phys. Fluids 22, 014104.CrossRefGoogle Scholar
Dimonte, G., Terrones, G., Cherne, F.J. & Ramaprabhu, P. 2013 Ejecta source model based on the nonlinear Richtmyer–Meshkov instability. J. Appl. Phys. 113, 024905.CrossRefGoogle Scholar
Gao, X., Guo, X., Zhai, Z. & Luo, X. 2024 Interfacial instabilities driven by co-directional rarefaction and shock waves. J. Fluid Mech. 980, A20.CrossRefGoogle Scholar
Goncharov, V.N. 2002 Analytical model of nonlinear, single-mode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers. Phys. Rev. Lett. 88, 134502.CrossRefGoogle ScholarPubMed
Guo, X., Cong, Z., Si, T. & Luo, X. 2022 a Shock-tube studies of single- and quasi-single-mode perturbation growth in Richtmyer–Meshkov flows with reshock. J. Fluid Mech. 941, A65.CrossRefGoogle Scholar
Guo, X., Si, T., Zhai, Z. & Luo, X. 2022 b Large-amplitude effects on interface perturbation growth in Richtmyer–Meshkov flows with reshock. Phys. Fluids 34, 082118.CrossRefGoogle Scholar
Han, Z. & Yin, X. 1993 Shock Dynamics. Kluwer Academic.CrossRefGoogle Scholar
Holmes, R.L., Dimonte, G., Fryxell, B., Gittings, M.L., Grove, J.W., Schneider, M., Sharp, D.H., Velikovich, A.L., Weaver, R.P. & Zhang, Q. 1999 Richtmyer–Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 5579.CrossRefGoogle Scholar
Jacobs, J.W., Jenkins, D.G., Klein, D.L. & Benjamin, R.F. 1995 Nonlinear growth of the shock-accelerated instability of a thin fluid layer. J. Fluid Mech. 295, 2342.CrossRefGoogle Scholar
Jacobs, J.W., Klein, D.L., Jenkins, D.G. & Benjamin, R.F. 1993 Instability growth patterns of a shock-accelerated thin fluid layer. Phys. Rev. Lett. 70, 583586.CrossRefGoogle ScholarPubMed
Jacobs, J.W. & Krivets, V.V. 2005 Experiments on the late-time development of single-mode Richtmyer–Meshkov instability. Phys. Fluids 17, 034105.CrossRefGoogle Scholar
Kuranz, C.C., Park, H.-S., Huntington, C.M., Miles, A.R., Remington, B.A., Plewa, T., Trantham, M.R., Robey, H.F., Shvarts, D. & Shimony, A. 2018 How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants. Nat. Commun. 9, 16.CrossRefGoogle ScholarPubMed
Li, J., Cao, Q., Wang, H., Zhai, Z. & Luo, X. 2023 New interface formation method for shock–interface interaction studies. Exp. Fluids 64, 170.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2021 On shock-induced heavy-fluid-layer evolution. J. Fluid Mech. 920, A13.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2022 a On shock-induced evolution of a gas layer with two fast/slow interfaces. J. Fluid Mech. 939, A16.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2022 b On shock-induced light-fluid-layer evolution. J. Fluid Mech. 933, A10.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2023 a Hydrodynamic instabilities of two successive slow/fast interfaces induced by a weak shock. J. Fluid Mech. 955, A40.CrossRefGoogle Scholar
Liang, Y. & Luo, X. 2023 b Review on hydrodynamic instabilities of a shocked gas layer. Sci. China Phys. Mech. 66, 104701.CrossRefGoogle Scholar
Lindl, J., Landen, O., Edwards, J., Moses, E. & Team, N. 2014 Review of the National Ignition Campaign 2009–2012. Phys. Plasmas 21, 020501.CrossRefGoogle Scholar
Liu, C., Zhang, Y. & Xiao, Z. 2023 A unified theoretical model for spatiotemporal development of Rayleigh–Taylor and Richtmyer–Meshkov fingers. J. Fluid Mech. 954, A13.CrossRefGoogle Scholar
Liu, L., Liang, Y., Ding, J., Liu, N. & Luo, X. 2018 An elaborate experiment on the single-mode Richtmyer–Meshkov instability. J. Fluid Mech. 853, R2.CrossRefGoogle Scholar
Luo, X., Liang, Y., Si, T. & Zhai, Z. 2019 Effects of non-periodic portions of interface on Richtmyer–Meshkov instability. J. Fluid Mech. 861, 309327.CrossRefGoogle Scholar
Mansoor, M.M., Dalton, S.M., Martinez, A.A., Desjardins, T., Charonko, J.J. & Prestridge, K.P. 2020 The effect of initial conditions on mixing transition of the Richtmyer–Meshkov instability. J. Fluid Mech. 904, A3.CrossRefGoogle Scholar
Mariani, C., Vanderboomgaerde, M., Jourdan, G., Souffland, D. & Houas, L. 2008 Investigation of the Richtmyer–Meshkov instability with stereolithographed interfaces. Phys. Rev. Lett. 100, 254503.CrossRefGoogle ScholarPubMed
Meshkov, E.E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.CrossRefGoogle Scholar
Meyer, K.A. & Blewett, P.J. 1972 Numerical investigation of the stability of a shock-accelerated interface between two fluids. Phys. Fluids 15, 753759.CrossRefGoogle Scholar
Mikaelian, K.O. 1985 Richtmyer–Meshkov instabilities in stratified fluids. Phys. Rev. A 31, 410419.CrossRefGoogle ScholarPubMed
Mikaelian, K.O. 1995 Rayleigh–Taylor and Richtmyer–Meshkov instabilities in finite-thickness fluid layers. Phys. Fluids 7, 888890.CrossRefGoogle Scholar
Mikaelian, K.O. 1996 Numerical simulations of Richtmyer–Meshkov instabilities in finite-thickness fluid layers. Phys. Fluids 8, 12691292.CrossRefGoogle Scholar
Mikaelian, K.O. 1998 Analytic approach to nonlinear Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Phys. Rev. Lett. 80, 508511.CrossRefGoogle Scholar
Mikaelian, K.O. 2009 Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities. Phys. Fluids 21, 024103.CrossRefGoogle Scholar
Mikaelian, K.O. & Olson, B.J. 2020 On modeling Richtmyer–Meshkov turbulent mixing widths. Physica D 402, 132243.CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Musci, B., Reilly, D., McFarland, J. & Ranjan, D. 2017 Evaluation of turbulent mixing transition in a shock-driven variable-density flow. J. Fluid Mech. 831, 779825.CrossRefGoogle Scholar
Mohaghar, M., Carter, J., Pathikonda, G. & Ranjan, D. 2019 The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions. J. Fluid Mech. 871, 595635.CrossRefGoogle Scholar
Montgomery, D.S., et al. 2018 Design considerations for indirectly driven double shell capsules. Phys. Plasmas 25, 092706.CrossRefGoogle Scholar
Morgan, R.V., Aure, R., Stockero, J.D., Greenough, J.A., Cabot, W., Likhachev, O.A. & Jacobs, J.W. 2012 On the late-time growth of the two-dimensional Richtmyer–Meshkov instabilities in shock tube experiments. J. Fluid Mech. 712, 354383.CrossRefGoogle Scholar
Morgan, R.V., Cabot, W.H., Greenough, J.A. & Jacobs, J.W. 2018 Rarefaction-driven Rayleigh–Taylor instability. Part 2. Experiments and simulations in the nonlinear regime. J. Fluid Mech. 838, 320355.CrossRefGoogle Scholar
Morgan, R.V., Likhachev, O.A. & Jacobs, J.W. 2016 Rarefaction-driven Rayleigh–Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory. J. Fluid Mech. 791, 3460.CrossRefGoogle Scholar
Orlicz, G.C., Balakumar, B.J., Tomkins, C.D. & Prestridge, K.P. 2009 A Mach number study of the Richtmyer–Meshkov instability in a varicose, heavy-gas curtain. Phys. Fluids 21, 064102.CrossRefGoogle Scholar
Orlicz, G.C., Balasubramanian, S. & Prestridge, K.P. 2013 Incident shock Mach number effects on Richtmyer–Meshkov mixing in a heavy gas layer. Phys. Fluids 25, 114101.CrossRefGoogle Scholar
Orlicz, G.C., Balasubramanian, S., Vorobieff, P. & Prestridge, K.P. 2015 Mixing transition in a shocked variable-density flow. Phys. Fluids 27, 114102.CrossRefGoogle Scholar
Pak, A., Divol, L., Weber, C.R., Hopkins, L.B., Clark, D.S., Dewald, E.L., Fittinghoff, D.N., Geppert-Kleinrath, V., Hohenberger, M., Pape, S.L., et al. 2020 Impact of localized radiative loss on inertial confinement fusion implosions. Phys. Rev. Lett. 124, 145001.CrossRefGoogle ScholarPubMed
Probyn, M.G., Thornber, R.J.R., Williams, B., Drikakis, D. & Youngs, D.L. 2021 2D single-mode Richtmyer–Meshkov instability. Physica D 418, 132827.CrossRefGoogle Scholar
Ranjan, D., Niederhaus, J.H.J., Oakley, J., Anderson, M.H. & Bonazza, R. 2009 Experimental investigation of shock-induced distortion of a light spherical gas inhomogeneity. In Shock Waves, pp. 1175–1180. Springer.CrossRefGoogle Scholar
Rayleigh, Lord 1883 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170177.Google Scholar
Reilly, D., McFarland, J., Mohaghar, M. & Ranjan, D. 2015 The effects of initial conditions and circulation deposition on the inclined-interface reshocked Richtmyer–Meshkov instability. Exp. Fluids 56, 168.CrossRefGoogle Scholar
Richtmyer, R.D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths 13, 297319.CrossRefGoogle Scholar
Sadler, J.D., Powell, P.D., Schalles, M., Louie, C., Jacobs, J.W. & Zhou, Y. 2024 Simulations of three-layer Richtmyer–Meshkov mixing in a shock tube. Phys. Fluids 36, 014120.CrossRefGoogle Scholar
Sadot, O., Erez, L., Alon, U., Oron, D., Levin, L.A., Erez, G., Ben-Dor, G. & Shvarts, D. 1998 Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer–Meshkov instability. Phys. Rev. Lett. 80, 16541657.CrossRefGoogle Scholar
Schalles, M., Louie, C., Peabody, K., Sadler, J., Zhou, Y. & Jacobs, J. 2024 Shock tube experiments on the three-layer Richtmyer–Meshkov instability. Phys. Fluids 36, 014126.CrossRefGoogle Scholar
Taylor, G.I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. A 201, 192196.Google Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50, 593627.CrossRefGoogle Scholar
Wang, H., Wang, H., Zhai, Z. & Luo, X. 2022 Effects of obstacles on shock-induced perturbation growth. Phys. Fluids 34, 086112.CrossRefGoogle Scholar
Zhang, Q. 1998 Analytical solutions of Layzer-type approach to unstable interfacial fluid mixing. Phys. Rev. Lett. 81, 3391.CrossRefGoogle Scholar
Zhang, Q. & Guo, W. 2016 Universality of finger growth in two-dimensional Rayleigh–Taylor and Richtmyer–Meshkov instabilities with all density ratios. J. Fluid Mech. 786, 4761.CrossRefGoogle Scholar
Zhang, Q. & Guo, W. 2022 Quantitative theory for spikes and bubbles in the Richtmyer–Meshkov instability at arbitrary density ratios. Phys. Rev. Fluids 7, 093904.CrossRefGoogle Scholar
Zhang, Y., Zhou, Z., Ding, J. & Luo, X. 2022 Interaction of a planar shock wave with two heavy/light interfaces. Acta Mechanica Sin. 38, 322047.CrossRefGoogle Scholar
Zhou, Y. 2017 a Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720–722, 1136.Google Scholar
Zhou, Y. 2017 b Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723–725, 1160.Google Scholar
Zhou, Y., Clark, T.T., Clark, D.S., Glendinning, S.G., Skinner, M.A., Huntington, C.M., Hurricane, O.A., Dimits, A.M. & Remington, B.A. 2019 Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26, 080901.CrossRefGoogle Scholar
Zhou, Y., et al. 2021 Rayleigh–Taylor and Richtmyer–Meshkov instabilities: a journey through scales. Physica D 423, 132838.CrossRefGoogle Scholar
Zucker, R.D. & Biblarz, O. 2019 Fundamentals of Gas Dynamics. Wiley.Google Scholar