Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T12:53:35.161Z Has data issue: false hasContentIssue false

On non-existence of steady periodic solutions of the Prandtl equations

Published online by Cambridge University Press:  07 February 2013

Michael Renardy*
Affiliation:
Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
*
Email address for correspondence: [email protected]

Abstract

We prove that periodic solutions of the steady Prandtl equations do not exist on a stationary boundary. On a moving boundary, there are no solutions with a monotone velocity profile.

Type
Rapids
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1956 On steady laminar flows with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177190.CrossRefGoogle Scholar
Cowley, S. J., Hocking, L. M. & Tutty, D. R. 1985 The stability of solutions of the classical unsteady boundary layer equation. Phys. Fluids 28, 441443.Google Scholar
Ding, Y. 2012 Remarks on the Prandtl boundary layer. J. Math. Anal. Appl. 389, 412419.Google Scholar
Edwards, D. A. 1997 Viscous boundary-layer effects in nearly inviscid cylindrical flows. Nonlinearity 10, 277290.Google Scholar
Feynman, R. P. & Lagerstrom, P. A. 1956 Remarks on high Reynolds number flows in finite domains. In Proceedings IXth Intl Congr. Appl. Mech., Brussels, pp. 342–343.Google Scholar
Gérard-Varet, D. & Dormy, E. 2010 On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23, 591609.Google Scholar
Kim, S. C. 1998 On Prandtl-Batchelor theory of a cylindrical eddy: asymptotic theory. SIAM J. Appl. Maths 58, 13941413.Google Scholar
Kim, S. C. 2000 On Prandtl-Batchelor theory of a cylindrical eddy: existence and uniqueness. Z. Angew. Math. Phys. 51, 674686.Google Scholar
Moore, D. W. 1957 The flow past a rapidly rotating circular cylinder in a uniform stream. J. Fluid Mech. 2, 541550.Google Scholar
Oleinik, O. A. & Samokhin, V. N. 1999 Mathematical models in boundary layer theory. In Applied Mathematics and Mathematical Computation, vol. 15. Chapman & Hall/CRC.Google Scholar
Prandtl, L. 1904 Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandlungen des III. Internationalen Mathematiker-Kongresses, Heidelberg, pp. 484491. Teubner.Google Scholar
Van Wijngaarden, L. 2007 Prandtl-Batchelor flows revisited. Fluid Dyn. Res. 39, 267278.Google Scholar
Wood, W. W. 1957 Boundary layers whose streamlines are closed. J. Fluid Mech. 2, 7787.CrossRefGoogle Scholar