Hostname: page-component-f554764f5-44mx8 Total loading time: 0 Render date: 2025-04-09T00:08:03.553Z Has data issue: false hasContentIssue false

On force balance in Brinkman fluids under confinement

Published online by Cambridge University Press:  28 March 2025

Abdallah Daddi-Moussa-Ider
Affiliation:
School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
Andrej Vilfan*
Affiliation:
Jožef Stefan Institute, Ljubljana 1000, Slovenia
*
Corresponding author: Andrej Vilfan, [email protected]

Abstract

A point force acting on a Brinkman fluid in confinement is always counterbalanced by the force on the porous medium, the force on the walls and the stress at open boundaries. We discuss the distribution of those forces in different geometries: a long pipe, a medium with a single no-slip planar boundary, a porous sphere with an open boundary and a porous sphere with a no-slip wall. We determine the forces using the Lorentz reciprocal theorem and additionally validate the results with explicit analytical flow solutions. We discuss the relevance of our findings for cellular processes such as cytoplasmic streaming and centrosome positioning.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abramowitz, M. & Stegun, I.A. 1972 Handbook of Mathematical Functions. Dover Publications.Google Scholar
Bet, B., Georgiev, R., Uspal, W., Eral, H.B., van Roij, R. & Samin, S. 2018 Calculating the motion of highly confined, arbitrary-shaped particles in Hele–Shaw channels. Microfluid. Nanofluid. 22 (8), 103.CrossRefGoogle ScholarPubMed
Bickel, T. 2006 Brownian motion near a liquid-like membrane. Eur. Phys. J. E 20 (4), 379385.CrossRefGoogle Scholar
Bickel, T. 2007 Hindered mobility of a particle near a soft interface. Phys. Rev. E 75 (4), 041403.CrossRefGoogle Scholar
Blake, J.R. 1971 A note on the image system for a stokeslet in a no-slip boundary. Math. Proc. Camb. Phil. Soc. 70 (2), 303310.CrossRefGoogle Scholar
Blake, J.R. 1979 On the generation of viscous toroidal eddies in a cylinder. J. Fluid Mech. 95 (2), 209222.CrossRefGoogle Scholar
Brenner, H. 1959 Pressure drop due to viscous flow through cylinders. J. Fluid Mech. 6 (4), 542546.CrossRefGoogle Scholar
Brinkman, H.C. 1949 a calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1 (1), 2734.CrossRefGoogle Scholar
Brinkman, H.C. 1949 b On the permeability of media consisting of closely packed porous particles. Flow Turbul. Combust. 1 (1), 8186.CrossRefGoogle Scholar
Coelho, D., Shapiro, M., Thovert, J. & Adler, P. 1996 Electroosmotic phenomena in porous media. J. Colloid Interface Sci. 181 (1), 169190.CrossRefGoogle Scholar
Daddi-Moussa-Ider, A. & Gekle, S. 2016 Hydrodynamic interaction between particles near elastic interfaces. J. Chem. Phys. 145 (1), 014905.CrossRefGoogle ScholarPubMed
Daddi-Moussa-Ider, A. & Gekle, S. 2018 Brownian motion near an elastic cell membrane: a theoretical study. Eur. Phys. J. E 41 (2), 19.CrossRefGoogle ScholarPubMed
Daddi-Moussa-Ider, A., Guckenberger, A. & Gekle, S. 2016 Long-lived anomalous thermal diffusion induced by elastic cell membranes on nearby particles. Phys. Rev. E 93 (1), 012612.CrossRefGoogle ScholarPubMed
Daddi-Moussa-Ider, A., Hosaka, Y., Vilfan, A. & Golestanian, R. 2023 Axisymmetric monopole and dipole flow singularities in proximity of a stationary no-slip plate immersed in a Brinkman fluid. Phys. Rev. Res. 5 (3), 033030.CrossRefGoogle Scholar
De Simone, A., Spahr, A., Busso, C. & Gönczy, P. 2018 Uncovering the balance of forces driving microtubule aster migration in C. elegans zygotes. Nat. Commun. 9 (1), 2283.CrossRefGoogle ScholarPubMed
Felderhof, B. 1975 Frictional properties of dilute polymer solutions. Physica A 80 (1), 6375.CrossRefGoogle Scholar
Ganguly, S., Williams, L.S., Palacios, I.M. & Goldstein, R.E. 2012 Cytoplasmic streaming in Drosophila oocytes varies with kinesin activity and correlates with the microtubule cytoskeleton architecture. Proc. Natl. Acad. Sci. USA 109 (38), 1510915114.CrossRefGoogle ScholarPubMed
Goldstein, R.E., Tuval, I. & van de Meent, J.-W. 2008 Microfluidics of cytoplasmic streaming and its implications for intracellular transport. Proc. Natl. Acad. Sci. USA 105 (10), 36633667.CrossRefGoogle ScholarPubMed
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Martinus Nijhoff.CrossRefGoogle Scholar
Howells, I.D. 1974 Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects. J. Fluid Mech. 64 (3), 449476.CrossRefGoogle Scholar
Keh, H.J. 2016 Diffusiophoresis of charged particles and diffusioosmosis of electrolyte solutions. Curr. Opin. Colloid Interface Sci. 24, 1322.CrossRefGoogle Scholar
Kim, S. & Karrila, S.J. 2005 Microhydrodynamics: Principles and Selected Applications. Dover Publications.Google Scholar
Kimura, K. et al. 2017 Endoplasmic-reticulum-mediated microtubule alignment governs cytoplasmic streaming. Nat. Cell Biol. 19 (4), 399406.CrossRefGoogle ScholarPubMed
Kree, R. & Zippelius, A. 2018 Self-propulsion of droplets driven by an active permeating gel. Eur. Phys. J. E 41 (10), 096601.CrossRefGoogle Scholar
Liron, N. & Shahar, R. 1978 Stokes flow due to a Stokeslet in a pipe. J. Fluid Mech. 86 (4), 727744.CrossRefGoogle Scholar
Masoud, H. & Stone, H.A. 2019 The reciprocal theorem in fluid dynamics and transport phenomena. J. Fluid Mech. 879, P1.CrossRefGoogle Scholar
Meaders, J.L. & Burgess, D.R. 2020 Microtubule-based mechanisms of pronuclear positioning. Cells 9 (2), 505.CrossRefGoogle ScholarPubMed
van de Meent, J.-W., Sederman, A.J., Gladden, L.F. & Goldstein, R.E. 2010 Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J. Fluid Mech. 642, 514.CrossRefGoogle Scholar
Misiunas, K., Pagliara, S., Lauga, E., Lister, J.R. & Keyser, U.F. 2015 Nondecaying hydrodynamic interactions along narrow channels. Phys. Rev. Lett. 115 (3), 038301.CrossRefGoogle ScholarPubMed
Moeendarbary, E., Valon, L., Fritzsche, M., Harris, A.R., Moulding, D.A., Thrasher, A.J., Stride, E., Mahadevan, L. & Charras, G.T. 2013 The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12 (3), 253261.CrossRefGoogle ScholarPubMed
Mogilner, A. & Manhart, A. 2018 Intracellular fluid mechanics: coupling cytoplasmic flow with active cytoskeletal gel. Annu. Rev. Fluid Mech. 50 (1), 347370.CrossRefGoogle Scholar
Mondy, L.A., Tetlow, N., Graham, A.L., Abbott, J. & Brenner, H. 1997 The pressure drop created by a ball settling in a quiescent suspension of comparably sized spheres. J. Fluid Mech. 353, 3144.CrossRefGoogle Scholar
Moradi, M., Shi, W. & Nazockdast, E. 2022 General solutions of linear poro-viscoelastic materials in spherical coordinates. J. Fluid Mech. 946, A22.CrossRefGoogle Scholar
Moradi, M., Shi, W. & Nazockdast, E. 2024 A reciprocal theorem for biphasic poro-viscoelastic materials. J. Fluid Mech. 997, A62.CrossRefGoogle Scholar
Navardi, S. & Bhattacharya, S. 2010 A new lubrication theory to derive far-field axial pressure difference due to force singularities in cylindrical or annular vessels. J. Math. Phys. 51 (4), 81.CrossRefGoogle Scholar
Nazockdast, E., Rahimian, A., Needleman, D. & Shelley, M. 2017 Cytoplasmic flows as signatures for the mechanics of mitotic positioning. Mol. Biol. Cell 28 (23), 32613270.CrossRefGoogle ScholarPubMed
Needleman, D. & Shelley, M. 2019 The stormy fluid dynamics of the living cell. Phys. Today 72 (9), 3238.CrossRefGoogle Scholar
Nganguia, H. & Pak, O.S. 2018 Squirming motion in a Brinkman medium. J. Fluid Mech. 855, 554573.CrossRefGoogle Scholar
Palaniappan, D. 2014 On some general solutions of transient Stokes and Brinkman equations. J. Theor. Appl. Mech. 52, 405415.Google Scholar
Pliskin, I. & Brenner, H. 1963 Experiments on the pressure drop created by a sphere settling in a viscous liquid. J. Fluid Mech. 17 (1), 8996.CrossRefGoogle Scholar
Pop, I. & Ingham, D. 1996 Flow past a sphere embedded in a porous medium based on the Brinkman model. Int. Commun. Heat Mass Transfer 23 (6), 865874.CrossRefGoogle Scholar
Reinsch, S. & Karsenti, E. 1997 Movement of nuclei along microtubules in Xenopus egg extracts. Curr. Biol. 7 (3), 211214.CrossRefGoogle ScholarPubMed
Shinar, T., Mana, M., Piano, F. & Shelley, M.J. 2011 A model of cytoplasmically driven microtubule-based motion in the single-celled Caenorhabditis elegans embryo. Proc. Natl. Acad. Sci. USA 108 (26), 1050810513.CrossRefGoogle Scholar
Škultéty, V. & Morozov, A. 2020 A note on forces exerted by a Stokeslet on confining boundaries. J. Fluid Mech. 882, A1.CrossRefGoogle Scholar
Tanimoto, H., Kimura, A. & Minc, N. 2016 Shape–motion relationships of centering microtubule asters. J. Cell Biol. 212 (7), 777787.CrossRefGoogle ScholarPubMed
Tanimoto, H., Sallé, J., Dodin, L. & Minc, N. 2018 Physical forces determining the persistency and centring precision of microtubule asters. Nat. Phys. 14 (8), 848854.CrossRefGoogle Scholar
Wang, C.Y. 2001 Stokes flow through a rectangular array of circular cylinders. Fluid Dyn. Res. 29 (2), 6580.CrossRefGoogle Scholar
Wu, H.-Y., Kabacaoğlu, G., Nazockdast, E., Chang, H.-C., Shelley, M.J. & Needleman, D.J. 2024 Laser ablation and fluid flows reveal the mechanism behind spindle and centrosome positioning. Nat. Phys. 20 (1), 157168.CrossRefGoogle Scholar