Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T18:39:10.291Z Has data issue: false hasContentIssue false

On evaporation of sessile drops with moving contact lines

Published online by Cambridge University Press:  18 April 2011

N. MURISIC
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
L. KONDIC*
Affiliation:
Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
*
Email address for correspondence: [email protected]

Abstract

We consider theoretically, computationally and experimentally spontaneous evaporation of water and isopropanol drops on smooth silicon wafers. In contrast to a number of previous works, the solid surface we consider is smooth and therefore the droplets' evolution proceeds without contact line pinning. We develop a theoretical model for evaporation of pure liquid drops that includes Marangoni forces due to the thermal gradients produced by non-uniform evaporation, and heat conduction effects in both liquid and solid phases. The key ingredient in this model is the evaporative flux. We consider two commonly used models: one based on the assumption that the evaporation is limited by the processes originating in the gas (vapour diffusion-limited evaporation), and the other one which assumes that the processes in the liquid are limiting. Our theoretical model allows for implementing evaporative fluxes resulting from both approaches. The required parameters are obtained from physical experiments. We then carry out fully nonlinear time-dependent simulations and compare the results with the experimental ones. Finally, we discuss how the simulation results can be used to predict which of the two theoretical models is appropriate for a particular physical experiment.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA.

References

REFERENCES

Ajaev, V. S. 2005 Spreading of thin volatile liquid droplets on uniformly heated surfaces. J. Fluid Mech. 528, 279.Google Scholar
Anderson, D. M. & Davis, S. H. 1995 The spreading of volatile liquid droplets on heated surfaces. Phys. Fluids 7, 248.CrossRefGoogle Scholar
Atkins, P. & dePaula, J. Paula, J. 2006 Atkins' Physical Chemistry, 8th edn. Oxford University Press.Google Scholar
Barash, L. Yu., Bigioni, T. P., Vinokur, V. M. & Shchur, L. N. 2009 Evaporation and fluid dynamics of a sessile drop of capillary size. Phys. Rev. E 79, 046301.Google Scholar
Barnes, G. T. 1978 Insoluble monolayers and the evaporation coefficient for water. J. Colloid Interface Sci. 65, 5666.Google Scholar
Barnes, G. T. 1986 The effects of monolayers on the evaporation of liquids. Adv. Colloid Interface Sci. 25, 89.Google Scholar
Berteloot, G., Pham, C. T., Daerr, A., Lequeux, F. & Limat, L. 2008 Evaporation-induced flow near a contact line: consequences on coating and contact angle. Europhys. Lett. 83, 14003.CrossRefGoogle Scholar
Bhardwaj, R., Fang, X. & Attinger, D. 2009 Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. New J. Phys. 11, 075020.CrossRefGoogle Scholar
Blossey, R. 2003 Self-cleaning surfaces – virtual realities. Nature Mater. 2, 301.Google Scholar
Burelbach, J. P., Bankoff, S. G. & Davis, S. H. 1988 Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195, 463.CrossRefGoogle Scholar
Cachile, M., Benichou, O., Poulard, C. & Cazabat, A. M. 2002 Evaporating droplets. Langmuir 18, 8070.CrossRefGoogle Scholar
Cammenga, H. K. 1980 Evaporation mechanisms of liquids. In Current Topics in Materials Science (ed. Kaldis, E.), vol. V/4, p. 335. North-Holland.Google Scholar
Cazabat, A. & Guena, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matter 6, 2591.CrossRefGoogle Scholar
Clausius, R. 1850 Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Ann. Phys. Chem. 79, 368, 500.CrossRefGoogle Scholar
Colinet, P., Legros, J. C. & Velarde, M. G. 2001 Nonlinear Dynamics of Surface-Tension-Driven Instabilities. Wiley-VCH.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131.CrossRefGoogle Scholar
David, S., Sefiane, K. & Tadrist, L. 2007 Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloids Surf. A 298, 108.Google Scholar
Deegan, R. D. 2000 Pattern formation in drying drops. Phys. Rev. E 61, 475.Google Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827.CrossRefGoogle Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756.Google Scholar
Derjaguin, B. V., Fedoseyev, V. A. & Rosenzweig, L. A. 1966 Investigation of the adsorption of cetyl alcohol vapor and the effect of this phenomenon on the evaporation of water drops. J. Colloid Interface Sci. 22, 45.Google Scholar
Diez, J. & Kondic, L. 2007 On the breakup of fluid films of finite and infinite extent. Phys. Fluids 19, 072107.CrossRefGoogle Scholar
Dondlinger, M., Margerit, J. & Dauby, P. C. 2005 Weakly nonlinear study of Marangoni instabilities in an evaporating liquid layer. J. Colloid Interface Sci. 283, 522.Google Scholar
Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K. 2008 A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory. Colloids Surf. A 323, 50.Google Scholar
Dunn, G. J., Wilson, S. K., Duffy, B. R., David, S. & Sefiane, K. 2009 The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329.Google Scholar
Fang, G. & Ward, C. A. 1999 Temperature measured close to the interface of an evaporating liquid. Phys. Rev. E 59, 417.CrossRefGoogle Scholar
Fischer, B. J. 2002 Particle convection in an evaporating colloidal droplet. Langmuir 18, 60.Google Scholar
Girard, F., Antoni, M., Faure, S. & Steinchen, A. 2006 Evaporation and Marangoni driven convection in small heated water droplets. Langmuir 22, 11085.Google Scholar
Girard, F., Antoni, M. & Sefiane, K. 2008 On the effect of Marangoni flow on evaporation rates of heated water drops. Langmuir 24, 9207.Google Scholar
Gotkis, Y., Ivanov, I., Murisic, N. & Kondic, L. 2006 Dynamic structure formation at the fronts of volatile liquid drops. Phys. Rev. Lett. 97, 186101.CrossRefGoogle ScholarPubMed
Guena, G., Allancon, P. & Cazabat, A. M. 2007 a Receding contact angle in the situation of complete wetting: experimental check of a model used for evaporating droplets. Colloids Surf. A 300, 307.Google Scholar
Guena, G., Poulard, C. & Cazabat, A. M. 2007 b Evaporating drops of alkane mixtures. Colloids Surf. A 298, 2.CrossRefGoogle Scholar
Haut, B. & Colinet, P. 2005 Surface-tension-driven instabilities of a pure liquid layer evaporating into an inert gas. J. Colloid Interface Sci. 285, 296.CrossRefGoogle ScholarPubMed
Hocking, L. M. 1995 On contact angles in evaporating liquids. Phys. Fluids 7, 2950.Google Scholar
Hu, H. & Larson, R. G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106, 1334.CrossRefGoogle Scholar
Hu, H. & Larson, R. G. 2005 a Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21, 3963.CrossRefGoogle Scholar
Hu, H. & Larson, R. G. 2005 b Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21, 3972.CrossRefGoogle Scholar
Israelachvili, J. N. 1992 Intermolecular and Surface Forces, 2nd edn. Academic.Google Scholar
Kennard, E. H. 1938 Kinetic Theory of Gases with an Introduction to Statistical Mechanics. McGraw-Hill.Google Scholar
Kim, J., Ahn, S. I., Kim, J. H. & Zin, W. 2007 Evaporation of water droplets on polymer surfaces. Langmuir 23, 6163.Google Scholar
Knudsen, M. 1915 Die maximale Verdampfungsgeschwindigkeit des Quecksilbers. Ann. Phys. 47, 697.CrossRefGoogle Scholar
Lide, D. R. (Ed.) 1997 Handbook of Chemistry and Physics, 78th edn. CRC Press.Google Scholar
Mansfield, W. W. 1955 Influence of monolayers on the natural rate of evaporation of water. Nature 175, 247.Google Scholar
Marek, R. & Straub, J. 2001 Analysis of the evaporation coefficient and the condensation coefficient of water. Intl J. Heat Mass Transfer 44, 39.Google Scholar
Margerit, J., Dondlinger, M. & Dauby, P. C. 2005 Improved 1.5-sided model for the weakly nonlinear study of Benard–Marangoni instabilities in an evaporating liquid layer. J. Colloid Interface Sci. 290, 220230.Google Scholar
Morris, S. J. S. 2001 Contact angles for evaporating liquids predicted and compared with existing experiments. J. Fluid Mech. 432, 1.Google Scholar
Murisic, N. & Kondic, L. 2008 Modeling evaporation of sessile drops with moving contact lines. Phys. Rev. E 78, 065301.CrossRefGoogle ScholarPubMed
Oron, A., Davis, S. H. & Bankoff, S. G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931.Google Scholar
Picknett, R. G. & Bexon, R. 1977 The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci. 61, 336.CrossRefGoogle Scholar
Plesset, M. S. & Prosperetti, A. 1976 Flow of vapour in a liquid enclosure. J. Fluid Mech. 78, 433.CrossRefGoogle Scholar
Popov, Y. O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313.Google Scholar
Poulard, C., Benichou, O. & Cazabat, A. M. 2003 Freely receding evaporating droplets. Langmuir 19, 8828.Google Scholar
Poulard, C., Guena, G., Cazabat, A. M., Boudaoud, A. & ben Amar, M. 2005 Rescaling the dynamics of evaporating drops. Langmuir 21, 8226.Google Scholar
Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J. & Stone, H. A. 2007 Influence of substrate conductivity on circulation reversal in evaporating drops. Phys. Rev. Lett. 99, 234502.CrossRefGoogle ScholarPubMed
Schrage, R. W. 1953 A Theoretical Study of Interphase Mass Transfer. Columbia University Press.CrossRefGoogle Scholar
Schwartz, L. W. & Eley, R. R. 1998 Simulation of droplet motion of low-energy and heterogenous surfaces. J. Colloid Interface Sci. 202, 173.Google Scholar
Sefiane, K., David, S. & Shanahan, M. E. R. 2008 Wetting and evaporation of binary mixture drops. J. Phys. Chem. B 112, 11317.Google Scholar
Sefiane, K. & Ward, C. A. 2007 Recent advances on thermocapillary flows and interfacial conditions during the evaporation of liquids. Adv. Colloid Interface Sci. 134, 201.CrossRefGoogle ScholarPubMed
Sodtke, C., Ajaev, V. S. & Stephan, P. 2007 Evaporation of thin liquid droplets on heated surfaces. Heat Mass Transfer 43, 649.CrossRefGoogle Scholar
Sodtke, C., Ajaev, V. S. & Stephan, P. 2008 Dynamics of volatile liquid droplets on heated surfaces: theory versus experiment. J. Fluid Mech. 610, 343.Google Scholar
Sultan, E., Boudaoud, A. & ben Amar, M. 2005 Evaporation of a thin film: diffusion of the vapor and Marangoni instabilities. J. Fluid Mech. 543, 183.Google Scholar
Xu, X. & Luo, J. 2007 Marangoni flow in an evaporating water droplet. Appl. Phys. Lett. 91, 124102.Google Scholar