Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T18:44:37.289Z Has data issue: false hasContentIssue false

On constant vorticity water flows in the $\unicode[STIX]{x1D6FD}$-plane approximation

Published online by Cambridge University Press:  26 February 2019

Calin Iulian Martin*
Affiliation:
School of Mathematical Sciences, University College Cork, Cork, T12 XF62, Ireland
*
Email address for correspondence: [email protected]

Abstract

We consider here three-dimensional water flows in the $\unicode[STIX]{x1D6FD}$-plane approximation. In a quite general setting we show that the only flow exhibiting a constant vorticity vector is the stationary flow with vanishing velocity field and flat free surface.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basu, B. & Martin, C. I. 2018 Resonant interactions of rotational water waves in the equatorial f-plane approximation. J. Math. Phys 59 (10), 103101.10.1063/1.5027027Google Scholar
Constantin, A. 2001 On the deep water wave motion. J. Phys. A 34, 14051417.Google Scholar
Constantin, A. 2011a Nonlinear Water Waves with Applications to Wave–Current Interactions Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 81. Society for Industrial and Applied Mathematics (SIAM).10.1137/1.9781611971873Google Scholar
Constantin, A. 2011b Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train. Eur. J. Mech. (B/Fluids) 30, 1216.10.1016/j.euromechflu.2010.09.008Google Scholar
Constantin, A. 2012a On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602.10.1029/2012GL051169Google Scholar
Constantin, A. 2012b An exact solution for equatorially trapped waves. J. Geophys. Res. 117, C05029.10.1029/2012JC007879Google Scholar
Constantin, A. 2013 Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43 (1), 165175.10.1175/JPO-D-12-062.1Google Scholar
Constantin, A. 2014 Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44 (2), 781789.10.1175/JPO-D-13-0174.1Google Scholar
Constantin, A. & Johnson, R. S. 2015 The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109 (4), 311358.10.1080/03091929.2015.1066785Google Scholar
Constantin, A. & Johnson, R. S. 2016a An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46 (6), 19351945.10.1175/JPO-D-15-0205.1Google Scholar
Constantin, A. & Johnson, R. S. 2016b An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46 (12), 35853594.10.1175/JPO-D-16-0121.1Google Scholar
Constantin, A. & Johnson, R. S. 2017a A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific Equatorial Undercurrent and thermocline. Phys. Fluids 29, 056604.10.1063/1.4984001Google Scholar
Constantin, A. & Johnson, R. S. 2017b Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. Lond. A 473 (2200), 20170063.10.1098/rspa.2017.0063Google Scholar
Constantin, A. & Kartashova, E. 2009 Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves. Europhys. Lett. 86, 29001.10.1209/0295-5075/86/29001Google Scholar
Constantin, A. & Monismith, S. 2017 Gerstner waves in the presence of mean currents and rotation. J. Fluid Mech. 820, 511528.10.1017/jfm.2017.223Google Scholar
Constantin, A. & Strauss, W. A. 2004 Exact steady periodic water waves with vorticity. Commun. Pure Appl. Maths 57 (4), 481527.10.1002/cpa.3046Google Scholar
Constantin, A. & Strauss, W. A. 2011 Periodic traveling gravity water waves with discontinuous vorticity. Arch. Rat. Mech. Anal. 202 (1), 133175.10.1007/s00205-011-0412-4Google Scholar
Craik, A. D. D. & Leibovich, S. 1976 A rational model for Langmuir circulations. J. Fluid Mech. 73 (3), 401426.10.1017/S0022112076001420Google Scholar
Craig, W. & Nicholls, D. P. 2000 Travelling two and three dimensional capillary gravity water waves. SIAM J. Math. Anal. 32 (2), 323359.10.1137/S0036141099354181Google Scholar
Cushman-Roisin, B. & Beckers, J. M. 2011 Introduction to Geophyiscal Fluid Dynamics: Physical and Numerical Aspects. Academic.Google Scholar
Dellar, P. J. 2011 Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674, 174195.10.1017/S0022112010006464Google Scholar
Dong, Z & Kirby, J. T. 2012 Theoretical and numerical study of wave–current interaction in strongly-sheared flows. In Proceedings of the 33rd International Conference on Coastal Engineering 2012, ICCE 2012 (ed. Lynett, P. & Smith, J. M.), no.33.Google Scholar
Dubreil-Jacotin, M.-L. 1932 Sur les ondes de type permanent dans les liquides hétérogène. Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis., Mat. Nat. 15, 814819.Google Scholar
Ellingsen, S. Å. 2016 Oblique waves on a vertically sheared current are rotational. Eur. J. Mech. (B/Fluids) 56, 156160.10.1016/j.euromechflu.2015.11.002Google Scholar
Gerstner, F. 1809 Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412445.10.1002/andp.18090320808Google Scholar
Groves, M. D. & Haragus, M. 2003 A bifurcation theory for three-dimensional oblique travelling gravity–capillary water waves. J. Nonlinear Sci. 13 (4), 397447.10.1007/s00332-003-0530-8Google Scholar
Henry, D. 2008 On Gerstner’s water wave. J. Nonlinear Math. Phys. 15 (suppl 2), 8795.10.2991/jnmp.2008.15.S2.7Google Scholar
Henry, D. 2013 An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. (B Fluids) 38, 1821.10.1016/j.euromechflu.2012.10.001Google Scholar
Henry, D. 2016 Equatorially trapped nonlinear water waves in a – plane approximation with centripetal forces. J. Fluid Mech. 804, R1.10.1017/jfm.2016.544Google Scholar
Henry, D. 2017 A modified equatorial – plane approximation modelling nonlinear wave-current interactions. J. Differ. Equ. 263 (5), 25542566.10.1016/j.jde.2017.04.007Google Scholar
Hsu, H.-C. & Martin, C. I. 2017 On the existence of solutions and the pressure function related to the Antarctic circumpolar current. Nonlinear Anal. 155, 285293.10.1016/j.na.2017.02.021Google Scholar
Iooss, G. & Plotnikov, P. I. 2009 Small divisor problem in the theory of three-dimensional water gravity waves. Mem. Amer. Math. Soc. 200 (940), viii+128.Google Scholar
Iooss, G. & Plotnikov, P. I. 2011 Asymmetrical three-dimensional travelling gravity waves. Arch. Rat. Mech. Anal. 200 (3), 789880.10.1007/s00205-010-0372-0Google Scholar
Johnson, R. S. 2018 Application of the ideas and techniques of classical fluid mechanics to some problems in physical oceanography. Phil. Trans. R. Soc. Lond. A 376 (2111), 20170102; 21.10.1098/rsta.2017.0092Google Scholar
Jonsson, I. G. 1990 Wave–current interactions. In The Sea, in Ocean Eng. Sc. (ed. Le Méhauté, B.), vol. 9(A), pp. 65120. Wiley.Google Scholar
Langmuir, I. 1938 Surface motion of water induced by wind. Science 87, 119123.10.1126/science.87.2250.119Google Scholar
Leibovich, S. 1977 On the evolution of the system of wind drift currents and Langmuir circulations in the ocean. Part 1. Theory and averaged current. J. Fluid Mech. 79 (4), 715743.10.1017/S002211207700041XGoogle Scholar
Leibovich, S. 1983 The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech. 15, 391427.10.1146/annurev.fl.15.010183.002135Google Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Martin, C. I. 2017 Resonant interactions of capillary–gravity water waves. J. Math. Fluid Mech. 19 (4), 807817.10.1007/s00021-016-0306-1Google Scholar
Martin, C. I. 2018 Non-existence of time-dependent three-dimensional gravity water flows with constant non-zero vorticity. Phys. Fluids 30 (10), 107102.10.1063/1.5048580Google Scholar
Moum, J. N. & Smyth, W. D. 2001 Upper Ocean Mixing Processes, 2nd edn (Encyclopedia of Ocean Sciences) .10.21236/ADA622503Google Scholar
Peregrine, D. H. 1976 Interactions of water waves and currents. Adv. Appl. Mech. 16, 9117.10.1016/S0065-2156(08)70087-5Google Scholar
Reeder, J & Shinbrot, M. 1981 Three-dimensional, nonlinear wave interaction in water of constant depth. Nonlinear Anal. 5 (3), 303323.10.1016/0362-546X(81)90035-3Google Scholar
Stiassnie, M. & Peregrine, D. H. 1979 On averaged equations for finite amplitude water waves. J. Fluid Mech. 94, 401407.10.1017/S0022112079001099Google Scholar
Stommel, H. 1951 Streaks on natural water surfaces. Weather 6 (3), 7274.10.1002/j.1477-8696.1951.tb01309.xGoogle Scholar
Stuhlmeier, R. 2012 On constant vorticity flows beneath two-dimensional surface solitary waves. J. Nonlinear Math. Phys. 19 (suppl. 1), 1240004, 9.10.1142/S1402925112400049Google Scholar
Thomas, G. P. & Klopman, G. 1997 Wave–current interactions in the nearshore region.Gravity Waves in Water of Finite Depth (ed. Hunt, J. N.), pp. 255319. Computational Mechanics Publications, WIT.Google Scholar
Wahlén, E. 2014 Non-existence of three-dimensional travelling water waves with constant non-zero vorticity. J. Fluid Mech. 746, R2.10.1017/jfm.2014.131Google Scholar